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Tutorial 2

Today’s topics:

● Recap about convolutions

● Recap about edge detection

● Coding assignment on edge detection
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Image Filtering, Convolution

http://en.wikipedia.org/wiki/Kernel_(image_processing)
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Edge Detection

http://vision.cs.arizona.edu/nvs/research/image_analysis/edge.html
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Edges

Edges in images are areas with strong intensity contrasts 

• Change is measured by derivative in 1D

• Biggest change, derivative has
maximum magnitude

• Or 2nd derivative is zero

http://www.pages.drexel.edu/~weg22/edge.html
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Gradient Method

Gradient Magnitude

Direction

Gradient Vector
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Image gradient?

Usual continuous derivatives:

Discrete approximation:

Translated in image convolutions:       
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Sobel kernel

Approximate of the 2D derivative of an image
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Prewitt kernel

Approximate of the 2D derivative of an image
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Gradient Thresholding
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Canny Edge Detection 

Combine noise reduction and edge enhancement.

1. Apply derivative of Gaussian filter
2. Non-maximum suppression
• Thin multi-pixel wide “ridges” down to single pixel 

width
3. Hysteresis
• Accept all edges over low threshold that are 

connected to edge over high threshold
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Derivative of Gaussian kernel 

0.0121    0.0261    0.0337    0.0261    0.0121
0.0261    0.0561    0.0724    0.0561    0.0261
0.0337    0.0724    0.0935    0.0724    0.0337
0.0261    0.0561    0.0724    0.0561    0.0261
0.0121    0.0261    0.0337    0.0261    0.0121
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Non-maximum suppression

• The edge direction angle is rounded to one of four angles 
representing vertical, horizontal and the two diagonals.

• Select the single maximum point across the width of an edge.

• Maximum: The gradient magnitudes of the two neighbors in 
edge normal direction are smaller.

courtesy of G. Loy
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Hysteresis  

Idea: real objects usually define continuous edges, noise is 
disrupted instead

In practice define two thresholds Tlow < Thigh and classify each 
a gradient pixel G:

● if G < Tlow then it’s definitely not an edge

● if G > Thigh then it’s definitely a strong edge

● if Tlow< G <Thigh then it is a weak edge if and only if it is 
connected to any strong edge through other weak edges
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Hysteresis  

courtesy of G. Loy

Strong
edges

only
> Thigh

Strong +
connected
weak edges

Weak
edges
> Tlow

gap is gone
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Coding assignment this week

Coding assignment available on same repository as last week 
(https://github.com/tavisualcomputing/viscomp2022) under 
Exercises/W3

To avoid merging issues with your solution from last week, every week 
you can pull the new exercise using the version_control.ipynb 
notebook.
(Or you can always clone the repository again)

Assignments:

1. Implement gradient thresholding edge detection

2. Implement Canny edge detection

https://github.com/tavisualcomputing/viscomp2022

