Tutorial 2

Today's topics:

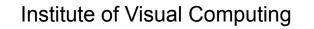
- Recap about convolutions
- Recap about edge detection
- Coding assignment on edge detection

Convolutions are:

• Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$

Convolutions are:

- Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$
- Local: I_{out}[i, j] depends only on neighbors of I_{in}[i, j]



Convolutions are:

- Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$
- Local: I_{out}[i, j] depends only on neighbors of I_{in}[i, j]
- Linear: $\mathbf{k} * (\alpha \mathbf{I}_1 + \beta \mathbf{I}_2) = \alpha (\mathbf{k} * \mathbf{I}_1) + \beta (\mathbf{k} * \mathbf{I}_2)$

Convolutions are:

• Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$

Local: I_{out}[i, j] depends only on neighbors of I_{in}[i, j]

- Linear: $\mathbf{k} * (\alpha \mathbf{I}_1 + \beta \mathbf{I}_2) = \alpha (\mathbf{k} * \mathbf{I}_1) + \beta (\mathbf{k} * \mathbf{I}_2)$
- Associative: $(k_1 * (k_2 * I)) = ((k_1 * k_2) * I)$

Convolutions are:

• Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$

• Local: I_{out}[i, j] depends only on neighbors of I_{in}[i, j]

- $\mathbf{k} \ast (\alpha \mathbf{I}_1 + \beta \mathbf{I}_2) = \alpha (\mathbf{k} \ast \mathbf{I}_1) + \beta (\mathbf{k} \ast \mathbf{I}_2)$ • Linear:
- $(k_1 * (k_2 * I)) = ((k_1 * k_2) * I)$ Associative:
- Shift invariant:

shift(k * I) = k * shift(I)

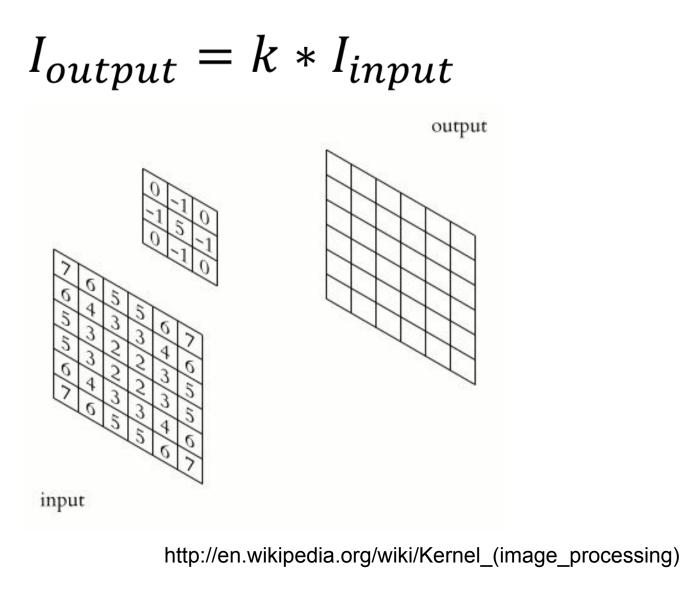
Convolutions are:

- Operator * mapping image and kernel to images: $I_{out} = k * I_{in}$
- Local: I_{out}[i, j] depends only on neighbors of I_{in}[i, j]
- Linear: $\mathbf{k} * (\alpha \mathbf{I}_1 + \beta \mathbf{I}_2) = \alpha (\mathbf{k} * \mathbf{I}_1) + \beta (\mathbf{k} * \mathbf{I}_2)$
- Associative: $(k_1 * (k_2 * I)) = ((k_1 * k_2) * I)$
- Shift invariant:
 shift(k * I) = k * shift(I)

$$I'(x, y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i, j) I(x - i, y - j)$$

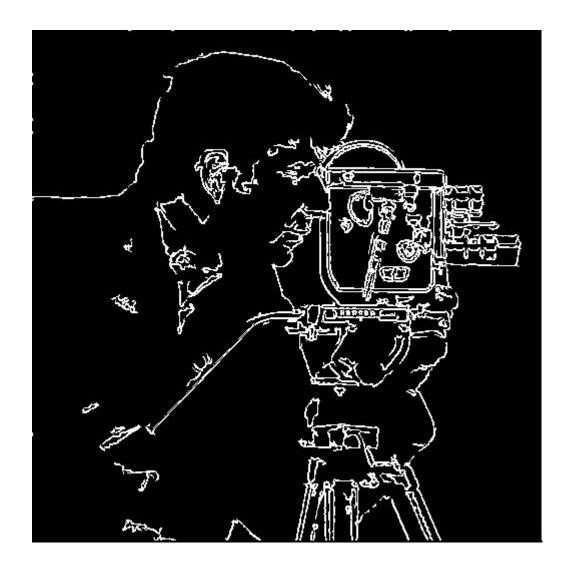
Image Filtering, Convolution

- Image filtered by convolving with a filter kernel
- Convolution denoted by "*"



<mark>Original</mark>	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge-Detect	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Blur*	$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	REF
	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	Y

Edge Detection



http://vision.cs.arizona.edu/nvs/research/image_analysis/edge.html



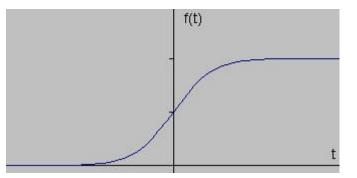
Edges

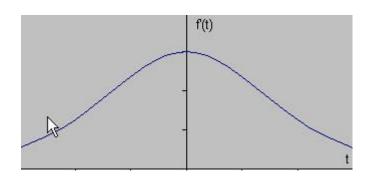
Edges in images are areas with strong intensity contrasts

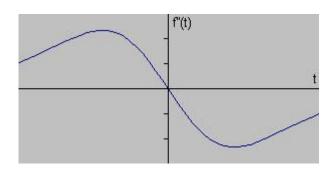
Change is measured by derivative in 1D

Biggest change, derivative has maximum magnitude

• Or 2nd derivative is zero







http://www.pages.drexel.edu/~weg22/edge.html

Gradient Method

Gradient Vector

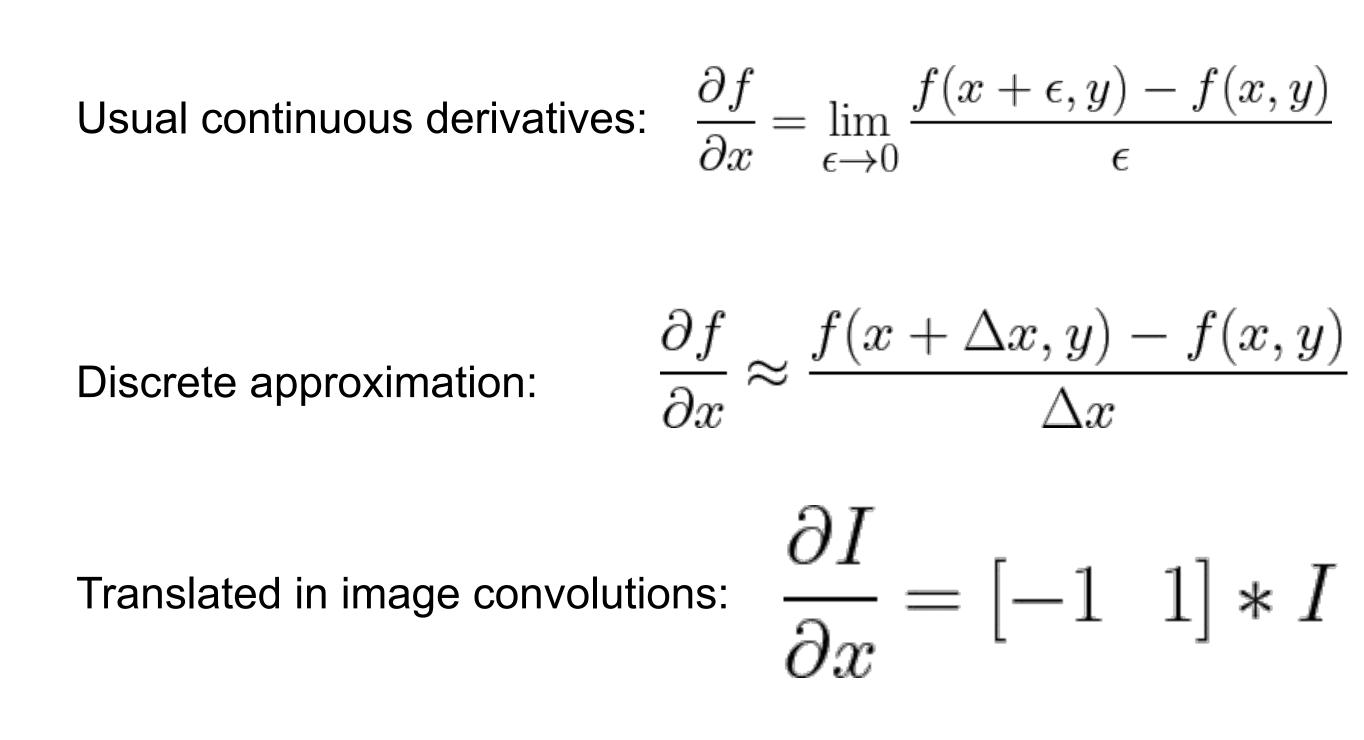
$$\mathbf{g}(x,y) = \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} (k_x * f)(x,y) \\ (k_y * f)(x,y) \end{bmatrix}$$

Gradient Magnitude

Direction

$$|\mathbf{g}| = (g_x^2 + g_y^2)^{1/2}$$
$$\theta = \tan^{-1} \left(\frac{g_y}{g_x}\right)$$

Image gradient?



Sobel kernel

Approximate of the 2D derivative of an image

$$k_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \qquad k_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

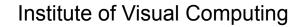
Prewitt kernel

Approximate of the 2D derivative of an image

$$k_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \qquad k_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Gradient Thresholding

Canny Edge Detection



Canny Edge Detection

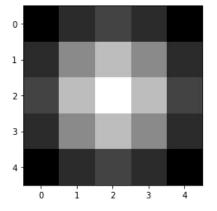
Combine noise reduction and edge enhancement.

- 1. Apply derivative of Gaussian filter
- 2. Non-maximum suppression
 - Thin multi-pixel wide "ridges" down to single pixel width
- 3. Hysteresis
 - Accept all edges over low threshold that are connected to edge over high threshold

Derivative of Gaussian kernel

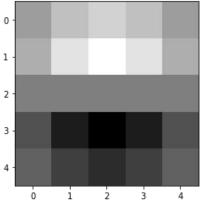
• Need smoothing to reduce noise prior to taking derivative

0.0121	0.0261	0.0337	0.0261	0.0121
0.0261	0.0561	0.0724	0.0561	0.0261
0.0337	0.0724	0.0935	0.0724	0.0337
0.0261	0.0561	0.0724	0.0561	0.0261
0.0121	0.0261	0.0337	0.0261	0.0121



- We can use derivative of Gaussian filters
 - because differentiation is convolution, and convolution is associative:

$$D * (G * I) = (D * G) * I$$



Non-maximum suppression

- The edge direction angle is rounded to one of four angles representing vertical, horizontal and the two diagonals.
- Select the single maximum point across the width of an edge.
 - Maximum: The gradient magnitudes of the two neighbors in edge normal direction are smaller.

Zürich

courtesy of G. Loy

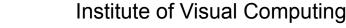
Computer Vision and Geometry Lab

Hysteresis

Idea: real objects usually define continuous edges, noise is disrupted instead

In practice define two thresholds $T_{low} < T_{high}$ and classify each a gradient pixel G:

- if $G < T_{low}$ then it's definitely *not* an edge
- if $G > T_{high}$ then it's definitely a strong edge
- if T_{low} < G <T_{high} then it is a weak edge if and only if it is connected to any strong edge through other weak edges



Hysteresis

Strong edges only > T_{high}

gap is gone

Strong + connected weak edges

courtesy of G. Loy

Institute of Visual Computing

Coding assignment this week

Coding assignment available on same repository as last week (<u>https://github.com/tavisualcomputing/viscomp2022</u>) under Exercises/W3

To avoid merging issues with your solution from last week, every week you can pull the new exercise using the version_control.ipynb notebook.

(Or you can always clone the repository again)

Assignments:

- 1. Implement gradient thresholding edge detection
- 2. Implement Canny edge detection



