Week 4 Tutorial

TA: Paul-Edouard Sarlin psarlin@ethz.ch

Topics:

- Fourier transform principles
- Filtering in spatial and frequency domain
- Low Pass filter
- High Pass filter
- Band Pass filter
- Sampling

Fourier Transform

- Represents signal as a sum of periodic signals (e.g. sine)
- An image is a 2D function I(x, y)
- Fourier transform:

$$F(I)(u,v) = \iint_{R^2} I(x,y) e^{-i2\pi(ux+vy)} dxdy$$

• Inverse Fourier transform:

2

$$I(x,y) = \iint_{R^2} F(I)(u,v) e^{i2\pi(ux+vy)} dudv$$

 $i^2 = -1$

Fourier Transform on Images

Intuition: the image I is decomposed into a weighted sum of 2D basis functions:

$$F(I)(u,v) = \iint_{R^2} I(x,y) e^{-i2\pi(ux+vy)} dxdy$$

$$B_{u,v}(x,y) = e^{-i2\pi(ux+vy)} = \cos(2\pi(ux+vy)) - i\sin(2\pi(ux+vy))$$

- Vector (u,v)
- Magnitude ~ frequency
- Direction ~ orientation

Fourier Transform on Images

Credits: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Fourier Transform and Convolution

- Convolution in spatial domain = multiplication in frequency domain and vice-versa.
- We can filter by applying Fourier Transform, multiplying and transforming back.

Frequencies in images

- Low image frequencies = slow gray level changes
- High image frequencies = fast changes in gray levels (e.g. edges and noise)

Task 1: Filtering

- Low pass filter
- High pass filter
- Band pass filter

Low pass filter

- Suppresses high frequencies, Retains low frequencies unchanged.
- Blocked high frequencies correspond to sharp intensity changes (fine-scale details, edges, noise)
- Result equivalent to smoothing.

Low pass filter: Gaussian

Low pass filter: Gaussian

Gaussian kernel of size (50, 50) and standard deviation 2.5

ETH zürich

Low pass filter

High pass filter

- Suppresses low frequencies, Retains high frequencies unchanged.
- Edges are enhanced
- Suppressed low frequencies correspond to areas of constant gray level
- Result equivalent to difference between original image and image filtered by Gaussian.
- Frequency complement of the low pass filter.

High pass filter

- Result equivalent to difference between original image and image filtered by Gaussian.
- Frequency complement of the low pass filter.

Spatial Domain

Band pass filter

- Suppresses both the low frequencies (< D0) and the high frequencies (> D1).
- Retains the middle range band of frequencies.
- May be used to enhance edges (suppressing high frequencies) while reducing the noise (suppressing low frequencies)
- Result equivalent to successive filtering by low pass filter and high pass filter

Band pass filter

 Result equivalent to successive filtering by low pass filter and high pass filter

Spatial Domain

Fourier Transform in Python

- Command fft2: runs Fast Fourier Transform on image
- In Python the low frequencies are displayed at the corners
- scipy.fftpack.fftshift brings the origin to the center of the image

Task 2: Sampling

- Sampling:
 - Discretization of the image by measuring values on a regular grid
- Nyquist–Shannon sampling theorem
 - Sampling frequency has to be at least 2x the highest frequency in image
 - If not fulfilled, aliasing appears.

Sampling scheme

Aliasing

Avoiding aliasing

- To avoid aliasing, the Nyquist-Shannon theorem must hold.
 - Sampling frequency \geq 2x the highest frequency in image
- Solution: Reduce the maximal frequency in data
 - Use the low-pass filter

Bonus task

- Blurred image of street signs
- Use one of the presented methods to make the text readable

