Tutorial 5: Optical Flow

Optical Flow

- What is optical flow?
- apparent motion of brightness patterns
- ideally: projection of a 3D motion into the 2D image plane

Optical Flow

- Dense: estimated for each pixel

Applications

- Object Segmentation and Tracking

Applications

- Frame Interpolation and Slow Motion

Optical Flow Estimation

How to estimate optical flow given two frames?

Optical Flow Estimation

How to estimate optical flow given two frames?

Optical Flow Estimation

How to estimate optical flow given two frames?
Assumption 1:
brightness of the point will remain the same

$I(x(t), y(t), t)=C$
Brightness Constancy

Optical Flow Estimation

How to estimate optical flow given two frames?
Assumption 2: Small motion

For very a small

$$
I(x, y, t)=I(x+\delta x, y+\delta y, t+\delta t)
$$

space-time step:

Brightness Constancy

$$
I(x, y, t)=I(x+\delta x, y+\delta y, t+\delta t)
$$

Brightness Constancy

$$
I(x, y, t)=I(x+\delta x, y+\delta y, t+\delta t)
$$

Taylor expansion

$$
I(x, y, t) \approx I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t
$$

Brightness Constancy

$$
I(x, y, t)=I(x+\delta x, y+\delta y, t+\delta t)
$$

Taylor expansion
$I(x, y, t) \approx I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t$

Brightness Constancy

$$
\begin{gathered}
I(x, y, t)=I(x+\delta x, y+\delta y, t+\delta t) \\
I(x, y, t) \approx I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t \\
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0
\end{gathered}
$$

Brightness Constancy

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0
$$

Brightness Constancy

$$
\begin{gathered}
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0 \\
I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0
\end{gathered}
$$

Brightness Constancy

$$
\begin{aligned}
& \frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0 \\
& I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0
\end{aligned}
$$

Brightness Constancy

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0
$$

Image gradient along x/y direction e.g. with Sobel Filter

Brightness Constancy

$$
\begin{aligned}
& \frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0 \\
& I_{x} \cdot u+I_{y} \cdot v+\underbrace{}_{t} \approx 0 \\
& \text { Temporal partial derivatives }
\end{aligned}
$$

Difference between two frames

Brightness Constancy

$$
\begin{gathered}
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0 \\
I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0
\end{gathered}
$$

One equation, two unknowns

Aperture Problem

- The local motion is inherently ambiguous with respect to the global motion
- 1 degree of freedom along the line

Aperture Problem

- The local motion is inherently ambiguous with respect to the global motion
- 1 degree of freedom along the line

Brightness Constancy

$$
\begin{gathered}
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t} \approx 0 \\
I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0
\end{gathered}
$$

One equation, two unknowns
\rightarrow We need more constraints (equations)

Spatial Coherency

- Assume the same flow for all pixels within a patch. = Flow is locally smooth

Spatial Coherency

- Assume the same flow for all pixels within a patch.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right] \quad \begin{aligned}
& \text { 5x5 patch } \\
& =25 \text { equations }
\end{aligned}
$$

Spatial Coherency

- Assume the same flow for all pixels within a patch.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right]
$$

- Estimate the optical flow by minimizing the error over a patch \rightarrow solve the linear system

Spatial Coherency

- Assume the same flow for all pixels within a patch.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right]
$$

- Estimate the optical flow by minimizing the error over a patch \rightarrow solve the linear system
- Solution given by

Spatial Coherency

- Assume the same flow for all pixels within a patch.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right]
$$

- Estimate the optical flow by minimizing the error over a patch \rightarrow solve the linear system
- Solution given by Lukas-Kanade Algorithm

Part A. Lucas-Kanade Algorithm

Step 1. Compute partial derivatives.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right]
$$

Part A. Lucas-Kanade Algorithm

Step 1. Compute partial derivatives.

$$
\left[\begin{array}{cc}
I_{x}\left(\mathrm{p}_{1}\right) & I_{y}\left(\mathrm{p}_{1}\right) \\
I_{x}\left(\mathrm{p}_{2}\right) & I_{y}\left(\mathrm{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathrm{p}_{25}\right) & I_{y}\left(\mathrm{p}_{25}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathrm{p}_{1}\right) \\
I_{t}\left(\mathrm{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathrm{p}_{25}\right)
\end{array}\right]
$$

Step 2. Construct and solve the above linear system.

Part A. Lucas-Kanade Algorithm

Image 1

Image 2

Part A. Lucas-Kanade Algorithm

Part A. Lucas-Kanade Algorithm

Part B. Lucas-Kanade with Pyramids

Part B. Coarse-to-Fine Estimation

with pyramids

without pyramids

Ground-truth

Part C. Frame Extrapolation

Image 1 and 2

Part C. Frame Extrapolation

Extrapolated frames

Takeaways

- Optical flow with Lucas-Kanade
- Assume brightness constancy + small motion
- Image gradients + temporal difference
- Use image pyramids for larger motions

Exercise

Two options:

- GitHub + jupyter notebooks run locally https://github.com/tavisualcomputing/viscomp2023
- Google Colab: Python notebook in the cloud https://colab.research.google.com/github/tavisualco mputing/viscomp2023/blob/main/Exercises/W6/W6 exercise.ipynb
- Questions: Moodle forum https://moodleapp2.let.ethz.ch/mod/forum/view.php?id=964720

