Visual Computing Exercise 8:

 Matrices and QuaternionsNikola Kovacevic nikolak@inf.ethz.ch

Today

- Transformations \& Matrices
- Quaternions
- Exercise 08

Transformations

Transformations

- Homogeneous Coordinates

$$
\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Why? Represent translation using matrix multiplication

Transformations

- Rotation
- Translation
- Scaling
- Order matters!

$$
\left[\begin{array}{ll}
\mathbf{R} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{I} & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{S} & 0 \\
0 & 1
\end{array}\right]
$$

Transformations

- Order matters!
- Rotate and translate

X

Rx

TRx

Transformations

- Order matters!
- Translate and rotate

Object to Camera

Example : Object to World to Camera

From the Lecture

From the Lecture

From the Lecture

Quaternions

Sir William Rowan Hamilton

Was trying to extend the notion of complex numbers to 3D

Quaternions

Quaternions

Early attempts

1 dimension a
2 dimensions $a+i b$
So... 3 dimensions $a+i b+j c \quad i^{2}=j^{2}=-1$

Problem

$$
\begin{gathered}
\mathbf{z}_{1}=a_{1}+i b_{1}+j c_{1} \\
\mathbf{z}_{2}=a_{2}+i b_{2}+j c_{2} \\
\mathbf{z}_{1} \mathbf{z}_{2}=\mathbf{\square}+i \mathbf{\square}+j \mathbf{\square}+i j \mathbf{\square}+[i] \\
i j=? \quad j i=? \quad i j=j i ?
\end{gathered}
$$

Quaternions

Idea : extend the triple into a 4-uple

$$
\mathbf{z}=a+i b+j c+k d
$$

With

$$
\begin{array}{rlrl}
i^{2} & =j^{2}=k^{2} & =-1 \quad \text { and } \quad i j k=-1 \\
i j & =k & j i & =-k \\
j k & =i & k j & =-i \\
k i & =j & i k & =-j
\end{array}
$$

z is called a quaternion

Quaternions

A few intuitive properties :

$$
a_{1}+i b_{1}+j c_{1}+k d_{1}=a_{2}+i b_{2}+j c_{2}+k d_{2}
$$

$$
a_{1}=a_{2} \quad b_{1}=b_{2} \quad c_{1}=c_{2} \quad d_{1}=d_{2}
$$

Quaternions

A few intuitive properties :

$$
\begin{array}{ccccc}
& \begin{array}{c}
a_{1}
\end{array} \begin{array}{ccc}
+i b_{1} & +j c_{1} & +k d_{1} \\
+ & a_{2}+i & b_{2}+j
\end{array} c_{2}+k & d_{2} \\
\hline & \left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)+j\left(c_{1}+c_{2}\right)+k\left(d_{1}+d_{2}\right)
\end{array}
$$

Quaternions

A few intuitive properties :

$$
\mathbf{q}=a+i b+j c+k d
$$

The magnitude is defined by

$$
\|\mathbf{q}\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

Unit form of a quaternion
$\frac{\mathbf{q}}{\|\mathbf{q}\|}$

Quaternions

Warning : a quaternion should not be seen as a vector !

$$
\mathbf{z}=s+i x+j y+k z=s+\varlimsup_{\text {scalar }}^{\mathbf{v}}{\underset{\text { vector }}{ }, ~}_{\text {ver }}
$$

Quaternions

A quick exercise!

$$
\mathbf{z}_{1}=s_{1}+\mathbf{v}_{\mathbf{1}} \quad \mathbf{z}_{\mathbf{2}}=s_{2}+\mathbf{v}_{\mathbf{2}}
$$

Prove that
$\mathbf{z}_{\mathbf{1}} \mathbf{z}_{\mathbf{2}}=s_{1} s_{2}-\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}+s_{1} \mathbf{v}_{2}+s_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}$

Hint: Write the quaternions in the form $\quad \mathbf{q}=a+i b+j c+k d$

Quaternions

$$
\begin{aligned}
& \left.\mathbf{z}_{\mathbf{1}} \mathbf{z}_{\mathbf{2}}=s_{1} s_{2}-\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}\right]+s_{1} \mathbf{v}_{2}+s_{2} \mathbf{V}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2} \\
& \begin{array}{cc}
= & =\quad=X= \\
\mathbf{z}_{2} \mathbf{z}_{1}= \\
s_{2} s_{1} \\
\mathbf{v}_{2} \cdot \mathbf{v}_{1} \\
s_{2} \mathbf{v}_{1}+s_{1} \mathbf{v}_{2} \\
\mathbf{v}_{2} \times \mathbf{v}_{1}
\end{array}
\end{aligned}
$$

$$
\mathbf{z}_{2} \mathbf{z}_{1} \neq \mathbf{z}_{1} \mathbf{z}_{2}
$$

Quaternions

Conjugate

$$
\mathbf{z}=s+\mathbf{v} \quad \overline{\mathbf{z}}=s-\mathbf{v}
$$

Exercise:

$$
\begin{aligned}
& \text { Compute } \mathbf{z} \overline{\mathbf{Z}}=\|\mathbf{z}\|^{2} \\
& \mathbf{z}^{-1}=\frac{\overline{\mathbf{z}}}{\|\mathbf{z}\|^{2}} \quad 1=\mathbf{z z}^{-1}=\mathbf{z}^{-1} \mathbf{z}
\end{aligned}
$$

Quaternions

Fun math, but why talk about it in a CG class?
Point in space p Rotate by θ around \mathbf{u}

$\mathbf{R}(\mathbf{u}, \theta)=$
$\left[\begin{array}{c}u_{x}^{2}+\cos \theta\left(1-u_{x}^{2}\right) \\ u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta \\ u_{x} u_{z}(1-\cos \theta)-u_{y} \sin \theta \\ 0\end{array}\right.$

$$
\begin{gather*}
u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta \tag{0}\\
u_{y}^{2}+\cos \theta\left(1-u_{y}^{2}\right) \\
u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
0
\end{gather*}
$$

$$
u_{x} u_{z}(1-\cos \theta)-u_{y} \sin \theta
$$

$u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \quad 0$
$u_{z}^{2}+\cos \theta\left(1-u_{z}^{2}\right)$
0
0
=

$$
\mathbf{p}=
$$

Quaternions

Fun math, but why talk about it in a CG class?

New version :

$$
P=[x, y, z]^{T} \quad \longrightarrow \text { Quaternion } \mathbf{p}=0+i x+j y+k z
$$

Rotation: Quaternion $\mathbf{q}=\cos (\theta / 2)+\sin (\theta / 2) \mathbf{u}$

$$
\mathbf{p}^{\prime}=\mathbf{q p q} \mathbf{q}^{-1}
$$

$$
\mathbf{q}^{-1}=\cos (\theta / 2)-\sin (\theta / 2) \mathbf{u}
$$

Quaternions

$$
P=[0,1,1]^{T} \quad \mathbf{u}=[0,1,0]^{T} \quad \theta=\pi / 2
$$

$$
\begin{aligned}
\mathbf{p}=0+i 0+j+k \quad \mathbf{q} & =\cos (\pi / 4)+\sin (\pi / 4)(0+i 0+j+k 0) \\
& =\frac{\sqrt{2}}{2}(1+j) \\
\mathbf{q}^{-1}= & \frac{\sqrt{2}}{2}(1-j) \\
\mathbf{p}^{\prime}=\mathbf{q p q}^{-1}=i+j & P^{\prime}=[1,1,0]^{T}
\end{aligned}
$$

Quaternions

- Why use quaternions?
- Efficient implementation
- Easy interpolation
- No Gimbal lock
- Translation is simple addition
- Rotation representation super easy

Any question so far?

Exercise 08

- Theoretical Part
- Remember this?

From the Lecture

Exercise 08

- Theoretical Part
- Remember this?
- And this?

Transforming Normal Vectors

- How to transform a normal when $\mathbf{p}^{\prime}=\mathbf{M p}$

Current normal

$$
\mathbf{n}=\left(\begin{array}{llll}
A & B & C & D
\end{array}\right)
$$

Transformed normal

$$
\mathbf{n}^{\prime}=\left(\mathbf{M}^{-1}\right)^{T} \mathbf{n}
$$

Verify by some algebra!
(Hint: the plane is given by $\mathbf{n}^{T} \mathbf{p}=0$)
ETHzürich

Exercise 08

- Practical Part

Exercise 08

- Practical Part
- Construct the view matrix and model matrix
- Add functionality for transformations from key events

Transformations in OpenGL

- ModelView Transform
- Stage 2: World to camera coordinates

$$
\left.\begin{array}{rc}
{\left[\begin{array}{cccc}
\text { left } & \text { up } & -\operatorname{dir} & \text { eye } \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c_{x} \\
c_{y} \\
c_{z} \\
1
\end{array}\right]} & =\begin{array}{c}
\text { Default in OpenGL: } \\
{\left[\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z} \\
1
\end{array}\right]}
\end{array} \quad \begin{array}{l}
\text { left }=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right)^{T} \\
\text { up }=\left(\begin{array}{ccc}
0 & 1 & 0
\end{array}\right)^{T} \\
\operatorname{dir}=\left(\begin{array}{ccc}
0 & 0 & -1
\end{array}\right)^{T}
\end{array} \\
\text { Eye (Camera) } & \begin{array}{l}
\text { World } \\
\text { Coordinates }
\end{array}
\end{array} \begin{array}{l}
\text { Coordinates }
\end{array} \quad \begin{array}{lll}
0 & 0 & 0
\end{array}\right)^{T} .
$$

Questions?

nikolak@inf.ethz.ch

