Visual Computing Exercise 8: Matrices and Quaternions

Nikola Kovacevic nikolak@inf.ethz.ch

- Transformations & Matrices
- Quaternions
- Exercise 08

• Homogeneous Coordinates

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Why? Represent translation using matrix multiplication

- Rotation
- Translation
- Scaling
- Order matters!

 $\begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & t \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$

- Order matters!
- Rotate and translate

- Order matters!
- Translate and rotate

Object to Camera

Example : Object to World to Camera

From the Lecture

From the Lecture

From the Lecture

Sir William Rowan Hamilton

Was trying to extend the notion of complex numbers to 3D

Early attempts

- **So...** 3 dimensions a + ib + jc $i^2 = j^2 = -1$

Problem

$$\mathbf{z}_1 = a_1 + ib_1 + jc_1$$
$$\mathbf{z}_2 = a_2 + ib_2 + jc_2$$
$$\mathbf{z}_1 \mathbf{z}_2 = \blacksquare + i\blacksquare + j\blacksquare + \mathbf{j}\blacksquare + \mathbf{j}\mathbf{j}\blacksquare + \mathbf{j}\mathbf{j}\blacksquare$$
$$ij = ? \qquad ji = ? \qquad ij = ji?$$

Idea : extend the triple into a 4-uple

$$\mathbf{z} = a + ib + jc + kd$$

With

$$i^{2} = j^{2} = k^{2} = -1 \text{ and } ijk = -1$$
$$ij = k \qquad ji = -k$$
$$jk = i \qquad kj = -i$$
$$ki = j \qquad ik = -j$$

z is called a quaternion

A few intuitive properties :

$$a_1 + ib_1 + jc_1 + kd_1 = a_2 + ib_2 + jc_2 + kd_2$$

 \iff
 $a_1 = a_2$ $b_1 = b_2$ $c_1 = c_2$ $d_1 = d_2$

A few intuitive properties :

A few intuitive properties : $\mathbf{q} = a + ib + jc + kd$

The magnitude is defined by $||\mathbf{q}|| = \sqrt{a^2 + b^2 + c^2 + d^2}$

Unit form of a quaternion $\frac{q}{||q||}$

Warning : a quaternion should not be seen as a vector !

$$\mathbf{z} = s + ix + jy + kz = s + \mathbf{v}$$

A quick exercise!

$$z_1 = s_1 + v_1$$
 $z_2 = s_2 + v_2$

Prove that

$$\mathbf{z_1}\mathbf{z_2} = s_1s_2 - \mathbf{v_1} \cdot \mathbf{v_2} + s_1\mathbf{v_2} + s_2\mathbf{v_1} + \mathbf{v_1} \times \mathbf{v_2}$$

Hint: Write the quaternions in the form $\mathbf{q} = a + ib + jc + kd$

$$\mathbf{z_1}\mathbf{z_2} = \underbrace{s_1s_2} - \underbrace{\mathbf{v_1} \cdot \mathbf{v_2}}_{\mathbf{1} + \mathbf{s_1}\mathbf{v_2}} + \underbrace{s_2\mathbf{v_1}}_{\mathbf{1} + \mathbf{v_1} \times \mathbf{v_2}} + \underbrace{\mathbf{v_1} \times \mathbf{v_2}}_{\mathbf{1} + \mathbf{s_2}\mathbf{v_1}} + \underbrace{\mathbf{v_1} \times \mathbf{v_2}}_{\mathbf{1} + \mathbf{s_1}\mathbf{v_2}} + \underbrace{\mathbf{v_1} \times \mathbf{v_2}}_{\mathbf{1} + \mathbf{s_1}\mathbf{v_2}} + \underbrace{\mathbf{v_2} \times \mathbf{v_1}}_{\mathbf{1} + \mathbf{s_2}\mathbf{v_1}} + \underbrace{\mathbf{v_2} \times \mathbf{v_1}}_{\mathbf{1} + \mathbf{v_2}\mathbf{v_1}} +$$

 $\mathbf{z_2z_1} \neq \mathbf{z_1z_2}$

Conjugate

$$\mathbf{z} = s + \mathbf{v}$$
 $\overline{\mathbf{z}} = s - \mathbf{v}$

Exercise:

Compute
$$\, {f z} \overline{f z} \, = ||{f z}||^2$$

$$\mathbf{z}^{-1} = \frac{\overline{\mathbf{z}}}{||\mathbf{z}||^2} \qquad 1 = \mathbf{z}\mathbf{z}^{-1} = \mathbf{z}^{-1}\mathbf{z}$$

Fun math, but why talk about it in a CG class?

Point in space
$$\mathbf{p}$$

Rotate by θ around \mathbf{u}
 $\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$

$$\mathbf{R}(\mathbf{u},\theta) = \begin{bmatrix} u_x^2 + \cos\theta(1-u_x^2) & u_x u_y(1-\cos\theta) - u_z \sin\theta & u_x u_z(1-\cos\theta) - u_y \sin\theta & 0\\ u_x u_y(1-\cos\theta) - u_z \sin\theta & u_y^2 + \cos\theta(1-u_y^2) & u_y u_z(1-\cos\theta) - u_x \sin\theta & 0\\ u_x u_z(1-\cos\theta) - u_y \sin\theta & u_y u_z(1-\cos\theta) - u_x \sin\theta & u_z^2 + \cos\theta(1-u_z^2) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Fun math, but why talk about it in a CG class?

New version :

 $P = [x, y, z]^T \longrightarrow$ Quaternion $\mathbf{p} = 0 + ix + jy + kz$

Rotation : Quaternion $\mathbf{q} = cos(\theta/2) + sin(\theta/2)\mathbf{u}$

$$\mathbf{p}' = \mathbf{q}\mathbf{p}\mathbf{q}^{-1}$$

$$\mathbf{q}^{-1} = \cos(\theta/2) - \sin(\theta/2)\mathbf{u}$$

$$P = [0, 1, 1]^T$$
 $\mathbf{u} = [0, 1, 0]^T$ $\theta = \pi/2$

$$\mathbf{p} = 0 + i0 + j + k \qquad \mathbf{q} = \cos(\pi/4) + \sin(\pi/4)(0 + i0 + j + k0)$$
$$= \frac{\sqrt{2}}{2}(1+j)$$
$$\mathbf{q}^{-1} = \frac{\sqrt{2}}{2}(1-j)$$

$$\mathbf{p}' = \mathbf{q}\mathbf{p}\mathbf{q}^{-1} = i + j$$
 $\left[P' = [1, 1, 0]^T\right]$

- Why use quaternions?
 - Efficient implementation
 - Easy interpolation
 - No Gimbal lock
- Translation is simple addition
- Rotation representation super easy

Any question so far?

- Theoretical Part
 - Remember this?

- Theoretical Part
 - Remember this?
 - And this?

• Practical Part

- Practical Part
 - Construct the view matrix and model matrix
 - Add functionality for transformations from key events

nikolak@inf.ethz.ch

