Light and Colors Prof. Dr. Markus Gross

Light in Computer Graphics

- Computer graphics "=" generating images
- Image = array of pixels
- Each pixel represents one light ray (or more)

What is light?

- A form of electromagnetic (EM) radiation
- x-rays, microwaves, radio waves, ...
- Amplitude determines intensity
- We perceive a limited section of the spectrum as "visible light"

What is color?

Spectral Distribution of Illumination

- Light can be a mixture of many wavelengths
- Spectral power distribution (SPD)
- $P(\lambda)=$ intensity at wavelength λ

- intensity as a function of wavelength
- We perceive these distributions as colors

Measuring Light

- Each ray carries a spectrum $P(\lambda)$
- $P(\lambda)$ contains more information than humans can and need to process
- Humans "project" this spectrum onto a lower-dimensional subspace

Review of 3D Vector Spaces

- $\mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}$ orthonormal basis vectors

$$
\mathbf{x}=x_{1} \mathbf{n}_{1}+x_{2} \mathbf{n}_{2}+x_{3} \mathbf{n}_{3}
$$

- Coordinates are inner products

$$
\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{n}_{1}\right) \mathbf{n}_{1}+\left(\mathbf{x} \cdot \mathbf{n}_{2}\right) \mathbf{n}_{2}+\left(\mathbf{x} \cdot \mathbf{n}_{3}\right) \mathbf{n}_{3}
$$

- Projection onto 2D subspace

$$
\mathbf{x}^{P}=\left(\mathbf{x} \cdot \mathbf{n}_{1}\right) \mathbf{n}_{1}+\left(\mathbf{x} \cdot \mathbf{n}_{2}\right) \mathbf{n}_{2}
$$

Infinite Dimensional Space

- Infinite dimensional vector is a function

$$
\mathbf{x}^{3 \mathrm{D}}=\left(x_{1}, x_{2}, x_{3}\right) \quad \longrightarrow \quad \mathbf{x}^{\mathrm{inf}}=x(\lambda)
$$

- Infinite number of basis functions needed
- Projection onto 3D subspace with $\mathrm{n}_{1}(\lambda), \mathrm{n}_{2}(\lambda), \mathrm{n}_{3}(\lambda)$ orthonormal basis functions

$$
\mathbf{x}^{\mathrm{P}}(\lambda)=x_{1} n_{1}(\lambda)+x_{2} n_{2}(\lambda)+x_{3} n_{3}(\lambda)
$$

- Coordinates are continuous inner products: $x_{i}=\int x(\lambda) n_{i}(\lambda) d \lambda$

What is color?

- Perception of light of certain wavelengths
- Can combine primary colors

$$
\mathbf{x}^{\mathrm{P}}(\lambda)=x_{1} n_{1}(\lambda)+x_{2} n_{2}(\lambda)+x_{3} n_{3}(\lambda)
$$

Anatomy of the Eye

Anatomy of the Eye

- Iris lets light into eye
- contracts and dilates in response to brightness
- the hole in the iris is the pupil

Anatomy of the Eye

- Lens focuses light on retina
- dynamically reshaped by surrounding muscles to control focus

Anatomy of the Eye

- Cells in retina react to light
- sends signals via optic nerve to brain
- fovea is the region of highest acuity

Retinal Composition : Two Kinds of Cells

near fovea

away from fovea

Retinal Composition : Two Kinds of Cells

- Cones are concentrated in fovea
- high acuity, require more light
- respond to color
- Rods concentrated outside fovea
- lower acuity, require less light
- respond to intensity only

near fovea

The Response of Cones to Color

- Three kinds of cones: S, L, and M
- S: short-wavelengths ("blue")
- M: medium-wavelengths ("green")
- L: long-wavelengths ("red")
- Eye projects $P(\lambda)$ into 3D subspace using these three basis functions/vectors

Color Perception

- Humans project $P(\lambda)$ into a 3D subspace
- Most mammals have 2 types of cones (2D subspace)
- Whales, dolphins, among other sea animals, have a single type of cone

Color Perception

- Many birds have UV receptors, some can see magnetic fields
- Some animals have more than 3 cones:
- Mantis Shrimp use an 8D subspace!

Metamers

- We project infinite dimensional space onto 3D
- Some information must be lost!
- Two completely different SPDs might look the same to us

The CIE Primary System (1931)

- Commission Internationale de l'Eclairage
- Setup for measuring human color sensitivity
- Three light sources at: 435.8, 546.1, and 700.0 nm

The CIE Primary System (1931)

- Commission Internationale de l'Eclairage
- Setup for measuring human color sensitivity
- Three light sources at: 435.8, 546.1, and 700.0 nm

blue filter

The CIE Primary System (1931)

Color Matching as Matrix Multiplication

Intensities for the three primary lights

$$
\begin{aligned}
& \text { rimary lights } \left.\begin{array}{c}
R \\
G \\
B
\end{array}\right]=\left[\begin{array}{llll}
\bar{r}\left(\lambda_{1}\right) & \bar{r}\left(\lambda_{2}\right) & \ldots & \bar{r}\left(\lambda_{N}\right) \\
\bar{g}\left(\lambda_{1}\right) & \bar{g}\left(\lambda_{2}\right) & \ldots & \bar{g}\left(\lambda_{N}\right) \\
\bar{b}\left(\lambda_{1}\right) & \bar{b}\left(\lambda_{2}\right) & \ldots & \bar{b}\left(\lambda_{N}\right)
\end{array}\right]\left[\begin{array}{c}
P\left(\lambda_{1}\right) \\
P\left(\lambda_{2}\right) \\
\vdots \\
P\left(\lambda_{N}\right)
\end{array}\right]
\end{aligned}
$$

SPD of test light

$$
\left[\begin{array}{l}
\bar{r}\left(\lambda_{1}\right) \\
\bar{g}\left(\lambda_{1}\right) \\
\bar{b}\left(\lambda_{1}\right)
\end{array}\right]=\left[\begin{array}{llll}
\bar{r}\left(\lambda_{1}\right) & \bar{r}\left(\lambda_{2}\right) & \ldots & \bar{r}\left(\lambda_{N}\right) \\
\bar{g}\left(\lambda_{1}\right) & \bar{g}\left(\lambda_{2}\right) & \ldots & \bar{g}\left(\lambda_{N}\right) \\
\bar{b}\left(\lambda_{1}\right) & \bar{b}\left(\lambda_{2}\right) & \ldots & \bar{b}\left(\lambda_{N}\right)
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Monochromatic test light

Color Matching as Matrix Multiplication

$$
\left[\begin{array}{c}
\bar{r}\left(\lambda_{1}\right) \\
\bar{g}\left(\lambda_{1}\right) \\
\bar{b}\left(\lambda_{1}\right)
\end{array}\right]=\left[\begin{array}{llll}
\bar{r}\left(\lambda_{1}\right) & \bar{r}\left(\lambda_{2}\right) & \ldots & \bar{r}\left(\lambda_{N}\right) \\
\bar{g}\left(\lambda_{1}\right) & \bar{g}\left(\lambda_{2}\right) & \ldots & \bar{g}\left(\lambda_{N}\right) \\
\bar{b}\left(\lambda_{1}\right) & \bar{b}\left(\lambda_{2}\right) & \ldots & \bar{b}\left(\lambda_{N}\right)
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

CIE 1931 RGB Color Matching Functions

CIE 1931 RGB Color Matching Functions

Negative Matching Values?

- What do these negative values mean?
- Some colors cannot be written as a combination of red, green and blue!
- Add red to the reference light

RGB Color Space

- Unit cube with R,G,B basis vectors

Other Color Spaces

- Our choice of RGB color space is fairly arbitrary, based on our perceptual system
- We could in principle select any 3 primaries
- different basis vectors, linear transformation
- new basis spans same 3D subspace
- We can also construct other 3D color spaces

CIE XYZ Color Space

- Infinitely many ways to obtain nonnegative matching functions!
- Lets call ours XYZ
- Represents all perceptible colors
- Vector (X, Y, Z) quantifies any spectral

$$
Z=\int_{0}^{\infty} P(\lambda) \bar{z}(\lambda) d \lambda
$$ color stimulus $P(\lambda)$ we perceive

- Compute by inner products of $P(\lambda)$ with matching functions

$$
\begin{aligned}
& X=\int_{0}^{\infty} P(\lambda) \bar{x}(\lambda) d \lambda \\
& Y=\int_{0}^{\infty} P(\lambda) \bar{y}(\lambda) d \lambda
\end{aligned}
$$

CIE XYZ Color Space

- Linear combinations: XYZ and RGB span the same 3D subspace

$$
X=\int_{0}^{\infty} P(\lambda) \bar{x}(\lambda) d \lambda
$$

$$
Y=\int_{0}^{\infty} P(\lambda) \bar{y}(\lambda) d \lambda
$$

$$
\left(\begin{array}{l}
\bar{x}(\lambda) \\
\bar{y}(\lambda) \\
\bar{z}(\lambda)
\end{array}\right)=\left(\begin{array}{ccc}
2.36 & -0.515 & 0.005 \\
-0.89 & 1.426 & 0.014 \\
-0.46 & 0.088 & 1.009
\end{array}\right)\left(\begin{array}{c}
\bar{r}(\lambda) \\
\bar{g}(\lambda) \\
\bar{b}(\lambda)
\end{array}\right)
$$

$$
Z=\int_{0}^{\infty} P(\lambda) \bar{z}(\lambda) d \lambda
$$

The CIE xyY Color Space

- Chromaticity (x, y) can be derived by normalizing the XYZ color components:

$$
x=\frac{X}{X+Y+Z}
$$

$$
y=\frac{Y}{X+Y+Z}
$$

- (x,y) characterize color
- Y characterizes brightness
- Plot on xy plane: all colors of a single brightness

CIE Chromaticity Chart

- Primary colors along curved boundary
- Linear combination of two colors : line connecting two points
- Linear combination of 3 colors span a triangle (Color Gamut)

CIE RGB Color Space

- Color primaries at:
- 435.8, 546.1, 700.0 nm
- What about colors outside the gamut?
- How did they appear in the CIE experiment?
- How can we actually plot this diagram on a computer screen?

Color Gamut

CIE Chromaticity Chart Features

- White Point
- Dominant wavelength
- Inverse color
- Non-spectral purples

Other Color Spaces

- Application specific color spaces for digital representation

CMY Color Space

- Used in passive color systems (printers)
- Inverse to RGB
- Transform given by:

$$
\left[\begin{array}{c}
C \\
M \\
Y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- CMYK: add black as color

CMY Color Space

YIQ Color Space

- Luminance Y, In-phase I (orange-blue), Quadrature Q (purple-green) components
- Advantages for natural and skin colors
- NTSC US-color TV standard

$$
\left[\begin{array}{c}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.523 & 0.311
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

HSV and HSL/HSB Color Spaces

- User-oriented color spaces
- Intuitive for interactive color picking
- Dimensions no longer primaries:
- hue: base color
- saturation: purity of color
- value/lightness/brightness

- Take RGB, CMY cubes and project to hexagon

HSV and HSL/HSB Color Spaces

- Conversion procedure (RGB $\rightarrow \mathrm{HSV}$)

```
\(\min =\min (\mathrm{R}, \mathrm{G}, \mathrm{B})\);
\(\max =\max (\mathrm{R}, \mathrm{G}, \mathrm{B})\);
\(\mathrm{V}=\max ;\)
If (max \(!=0\) )
    \(S=(\max -\min ) / \max ;\)
else
        \(\mathrm{S}=0\);
H = Hue (V, S, R, G, B); //procedural
comp.
```


Perceptually-Uniform Color Spaces

- Color spaces so far are perceptually non-uniform:
- two colors close together in space are not necessarily visually similar
- two colors far apart are not necessarily very different!
- Measuring "perceptual distance" in color spaces is important
- Experiments by MacAdams

MacAdams Color Ellipses

CIELAB and CIELUV Color Spaces

- MacAdams ellipses become nearly (but not perfectly) circular

OpenGL Color

- 4-vector in vertex- and fragment-shader

```
void main() {
    float r = 1.0;
    float g = 0.7;
    float b = 0.2;
    float a = 1.0;
    g1_FragColor = vec4(r, g, b, a);
}
```

- Normalized to [0,.., 1]
- 8 Bits/component -> "true color"

High Dynamic Range (HDR) Imaging

-4 stops

-2 stops

+2 stops
+4 stops

Fused result

Fused result + local tone mapping

END

ETHzürich

