Light and Colors Prof. Dr. Markus Gross

Light in Computer Graphics

Hzürich

E

- Computer graphics "=" generating images
- Image = array of pixels
- Each pixel represents one light ray (or more)

What is light?

- A form of electromagnetic (EM) radiation
 - x-rays, microwaves, radio waves, ...
 - Amplitude determines intensity
- We perceive a limited section of the spectrum as "visible light"

What is color?

Spectral Distribution of Illumination

- Light can be a mixture of many wavelengths
- Spectral power distribution (SPD)
 - $P(\lambda)$ = intensity at wavelength λ
 - intensity as a function of wavelength
- We perceive these distributions as colors

Measuring Light

- Each ray carries a spectrum $P(\lambda)$
- P(λ) contains more information than humans *can* and *need to* process
- Humans "project" this spectrum onto a lower-dimensional subspace

Review of 3D Vector Spaces

n₁, n₂, n₃ orthonormal basis vectors

 $\mathbf{x} = x_1 \mathbf{n}_1 + x_2 \mathbf{n}_2 + x_3 \mathbf{n}_3$

- Coordinates are inner products $\mathbf{x} = (\mathbf{x} \cdot \mathbf{n}_1)\mathbf{n}_1 + (\mathbf{x} \cdot \mathbf{n}_2)\mathbf{n}_2 + (\mathbf{x} \cdot \mathbf{n}_3)\mathbf{n}_3$
- Projection onto 2D subspace

Hzürich

E

$$\mathbf{x}^P = (\mathbf{x} \cdot \mathbf{n}_1)\mathbf{n}_1 + (\mathbf{x} \cdot \mathbf{n}_2)\mathbf{n}_2$$

Infinite Dimensional Space

Infinite dimensional vector is a function

$$\mathbf{x}^{3D} = (x_1, x_2, x_3) \longrightarrow \mathbf{x}^{inf} = x(\lambda)$$

• Infinite number of basis functions needed

Hzürich

• Projection onto 3D subspace with $n_1(\lambda)$, $n_2(\lambda)$, $n_3(\lambda)$ orthonormal basis functions

$$\mathbf{x}^{\mathrm{P}}(\lambda) = x_1 n_1(\lambda) + x_2 n_2(\lambda) + x_3 n_3(\lambda)$$

• Coordinates are continuous inner products: x_i =

$$\stackrel{\lambda)}{=} \int x(\lambda) n_i(\lambda) d\lambda$$

What is color?

- Perception of light of certain wavelengths
- Can combine primary colors

- Iris lets light into eye
 - contracts and dilates in response to brightness
 - the hole in the iris is the pupil

- Lens focuses light on retina
 - dynamically reshaped by surrounding muscles to control focus

- Cells in retina react to light
 - sends signals via optic nerve to brain
 - fovea is the region of highest acuity

Retinal Composition : Two Kinds of Cells

Retinal Composition : Two Kinds of Cells

- Cones are concentrated in fovea
 - high acuity, require more light
 - respond to color
- Rods concentrated outside fovea
 - lower acuity, require less light
 - respond to intensity only

The Response of Cones to Color

- Three kinds of cones: S, L, and M
 - S: short-wavelengths ("blue")
 - M: medium-wavelengths ("green")
 - L: long-wavelengths ("red")

Hzürich

E

• Eye projects $P(\lambda)$ into 3D subspace using these three basis functions/vectors

Color Perception

- Humans project $P(\lambda)$ into a 3D subspace
- Most mammals have 2 types of cones (2D subspace)
- Whales, dolphins, among other sea animals,

have a single type of cone

Color Perception

- Many birds have UV receptors, some can see magnetic fields
- Some animals have more than 3 cones:
 - Mantis Shrimp use an 8D subspace!

Metamers

- We project infinite dimensional space onto 3D
- Some information must be lost!
- Two completely different SPDs might look the same to us

The CIE Primary System (1931)

- Commission Internationale de l'Eclairage
- Setup for measuring human color sensitivity
 - Three light sources at: 435.8, 546.1, and 700.0 nm

The CIE Primary System (1931)

- Commission Internationale de l'Eclairage
- Setup for measuring human color sensitivity
 - Three light sources at: 435.8, 546.1, and 700.0 nm

The CIE Primary System (1931)

Color Matching as Matrix Multiplication

Color Matching as Matrix Multiplication

CIE 1931 RGB Color Matching Functions

CIE 1931 RGB Color Matching Functions

Negative Matching Values?

- What do these negative values mean?
 - Some colors **cannot** be written as a combination of red, green and blue!
 - Add red to the reference light

RGB Color Space

Unit cube with R,G,B basis vectors

Other Color Spaces

- Our choice of RGB color space is fairly arbitrary, based on our perceptual system
- We could in principle select any 3 primaries
 - different basis vectors, linear transformation
 - new basis spans same 3D subspace

Hzürich

• We can also construct other 3D color spaces

CIE XYZ Color Space

- Infinitely many ways to obtain nonnegative matching functions!
- Lets call ours XYZ
- Represents all perceptible colors
 - Vector (X, Y, Z) quantifies any spectral color stimulus P(λ) we perceive
 - Compute by inner products of $\mathsf{P}(\lambda)$ with matching functions

CIE XYZ Color Space

The CIE xyY Color Space

 Chromaticity (x,y) can be derived by normalizing the XYZ color components:

$$x = \frac{X}{X + Y + Z} \qquad \qquad y = \frac{Y}{X + Y + Z}$$

- (x,y) characterize *color*

- Y characterizes brightness
- Plot on xy plane: all colors of a single brightness

CIE Chromaticity Chart

ETH zürich

Primary colors along curved boundary

Linear combination of two colors : line connecting two points

Linear combination of 3 colors span a triangle (Color Gamut)

CIE RGB Color Space

- Color primaries at:
- 435.8, 546.1, 700.0 nm
- What about colors outside the gamut?
- How did they appear in the CIE experiment?
- How can we actually plot this diagram on a computer screen?

Color Gamut

CIE Chromaticity Chart Features

- White Point
- Dominant wavelength
- Inverse color
- Non-spectral purples

Other Color Spaces

• Application specific color spaces for digital representation

CMY Color Space

- Used in passive color systems (printers)
- Inverse to RGB
- Transform given by:

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

CMYK: add black as color

CMY Color Space

YIQ Color Space

- Luminance Y, In-phase I (orange-blue), Quadrature Q (purple-green) components
- Advantages for natural and skin colors
- NTSC US-color TV standard

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

HSV and HSL/HSB Color Spaces

- User-oriented color spaces
- Intuitive for interactive color picking
- Dimensions no longer primaries:
 - hue: base color

- saturation: purity of color
- value/lightness/brightness
- Take RGB, CMY cubes and project to hexagon

HSV and HSL/HSB Color Spaces

• Conversion procedure (RGB→HSV)

```
min = min(R, G, B);
max = max(R, G, B);
V = max;
If (max != 0)
  S = (max - min) / max;
else
  S = 0;
H = Hue (V, S, R, G, B); //procedural
comp.
```


Perceptually-Uniform Color Spaces

- Color spaces so far are perceptually non-uniform:
 - two colors close together in space are not necessarily visually similar
 - two colors far apart are not necessarily very different!
- Measuring "perceptual distance" in color spaces is important
- Experiments by MacAdams

MacAdams Color Ellipses

CIELAB and CIELUV Color Spaces

 MacAdams ellipses become nearly (but not perfectly) circular

OpenGL Color

• 4-vector in vertex- and fragment-shader

```
void main() {
  float r = 1.0;
  float g = 0.7;
  float b = 0.2;
  float a = 1.0;
  gl_FragColor = vec4(r, g, b, a);
}
```

- Normalized to [0,..,1]
- 8 Bits/component -> "true color"

High Dynamic Range (HDR) Imaging

END

