Lighting and Shading I Prof. Dr. Markus Gross

Before: nature of light and colors

Before: nature of light and colors

- Light can be a mixture of many wavelengths
- Spectral power distribution (SPD)
 - $P(\lambda)$ = intensity at wavelength λ
 - intensity as a function of wavelength
- We perceive these distributions as colors

Before: representing colors

Unit cube with R,G,B basis vectors

Before: we need material models

• Interaction of light with geometry

Measuring Light

• How do we measure light

Measuring = Counting photons

Measuring Light

- Radiometry
 - Studies the measurement of electromagnetic radiation, including visible light

ETH zürich

• Direction

Hzürich

E

- point on the unit sphere
- parameterized
 by two angles

$$\vec{\omega}_x = \sin \theta \cos \phi$$

 $\vec{\omega}_y = \sin \theta \sin \phi$

 $\vec{\omega}_z = \cos \theta$

Differential Solid Angle

$$dA = (rd\theta)(r\sin\theta d\phi)$$
$$d\vec{\omega} = \frac{dA}{r^2} = \sin\theta d\theta d\phi$$

$$\Omega = \int_{S^2} d\vec{\omega} = \int_0^{2\pi} \int_0^\pi \sin\theta d\theta d\phi = 4\pi$$

ETH zürich

- Assume light consists of photons with
 - $-\mathbf{x}$: Position
 - $-\vec{\omega}$: Direction of motion
 - $-\lambda$: Wavelength
- Each photon has an energy of: $\frac{hc}{r}$
 - $h \approx 6.63 \cdot 10^{-34} m^2 \cdot kg/s$: Planck's constant c = 299,792,458 m/s : speed of light in vacuum

 - Unit of energy, Joule : $[J = kq \cdot m^2/s^2]$

Hzürich E

- Basic quantities
 - flux Φ
 - irradiance E
 - radiosity B
 - intensity I
 - radiance L

- Flux (radiant flux, power)
 - total amount of energy passing through surface or space per unit time

$$\Phi(A) \qquad \left[\frac{J}{s} = W\right]$$

- examples:
 - number of photons hitting a wall per second
 - number of photons leaving a lightbulb per second

- Irradiance
 - flux per unit area *arriving* at a surface = area density of flux

$$E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})} \left[\frac{W}{m^2}\right]$$

- example:

ETH zürich

 number of photons hitting a small patch of a wall per second, divided by the size of the patch

- Radiosity
 - flux per unit area *leaving* a surface = area density of flux

$$B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})} \left[\frac{W}{m^2}\right]$$

- example:
 - number of photons reflecting off a small patch of a wall per second, divided by the size of the patch

- Irradiance
 - Lambert's Cosine Law

Irradiance

- Lambert's Cosine Law

- Radiant intensity
 - Power (flux) per solid angle = directional density of flux

$$I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}} \qquad \left[\frac{W}{sr}\right] \qquad \Phi = \int_{S^2} I(\vec{\omega}) d\vec{\omega}$$

- example:

ETH zürich

- power per unit solid angle emanating from a point source
 - $\Phi = 4\pi I \quad \text{isotropic point source}$

Radiance

Hzürich

 intensity per unit area = flux density per unit solid angle, per perpendicular unit area

$$L(\mathbf{x},\vec{\omega}) = \frac{dI(\vec{\omega})}{dA(\mathbf{x})} = \frac{d^2\Phi(A)}{d\vec{\omega}dA^{\perp}(\mathbf{x},\vec{\omega})} = \frac{d^2\Phi(A)}{d\vec{\omega}dA(\mathbf{x})\cos\theta}$$

most fundamental for raytracing
remains constant along a ray

- Other radiometric quantities can be expressed in terms of radiance
 - Irradiance: $L(\mathbf{x}, \vec{\omega}) = \frac{d^2 \Phi(A)}{\cos \theta dA(\mathbf{x}) d\vec{\omega}}$ $E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ $L(\mathbf{x}, \vec{\omega}) = \frac{dE(\mathbf{x})}{\cos \theta d\vec{\omega}}$ $L(\mathbf{x}, \vec{\omega}) \cos \theta d\vec{\omega} = dE(\mathbf{x})$ $\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta d\vec{\omega} = E(\mathbf{x})$
 - Integrate radiance over the hemisphere
 - Same for radiosity

ETH zürich

• Other radiometric quantities can be expressed in terms of radiance

- Flux:

$$E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$

$$\int_{A} E(\mathbf{x}) dA(\mathbf{x}) = \Phi(A)$$

$$\int_{A} \int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d\vec{\omega} dA(\mathbf{x}) = \Phi(A)$$

- Integrate irradiance over area

Hzürich

- Integrate radiance over hemisphere and area

Basic quantities

Reflection Models

Bidirectional Reflectance Distribution Function
 (BRDF)

BRDF

Bidirectional Reflectance Distribution Function

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{dE_i(\mathbf{x}, \vec{\omega}_i)}$$
$$= \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i} \quad [1/sr]$$

• Differential irradiance due to a cone of directions around $\vec{\omega}_i$

Reflection Equation

- The BRDF provides a relation between incident radiance and differential reflected radiance
- From this we can derive the Reflection Equation

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i}$$
$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{d\vec{\omega}_i}$$

Reflection Equation

- The Reflection Equation describes a *local illumination* model
 - reflected radiance due to incident illumination from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

Complex Reflections

anisotropic reflections

volumetric structures

Measuring BRDFs

Matusik et al.: Efficient Isotropic BRDF Measurement, Eurographics Symposium on Rendering 2003

Simpler Reflections

Hendrik Lensch, Efficient Image-Based Appearance Acquisition of Real-World Objects, Ph.D. thesis, 2004

Diffuse Reflection

• For diffuse reflection, the BRDF is a constant:

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

$$L_r(\mathbf{x}) = f_r \int_{H^2} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

 $L_r(\mathbf{x}) = f_r \, E_i(\mathbf{x})$

Simple Models

- Exact computation too slow
- OpenGL uses simplified reflection models
- Phong illumination

Ambient Light

- Scattered by environment
- Coming from all directions
- Reflection independent of
 - Camera position

Hzürich

E

- Light position (no light position)
- Surface orientation
- Reflected intensity: $I = I_a k_a$

Diffuse Reflection

- Directed light I_p
- Reflection dependent on
 - orientation of surface
 - light source position
- Independent of

E

• Reflected intensity:

A Simple Model

• Sum up ambient light and diffuse reflection:

$$I = I_a k_a + I_p k_d (\mathbf{N} \cdot \mathbf{L})$$

Attenuation

• Quadratic attenuation due to spatial radiation

$$f_{att} = \frac{1}{d_L^2}$$

• A model often used in Graphics (OpenGL)

$$f_{att} = \min\left(\frac{1}{c_1 + c_2 d_L + c_3 d_L^2}, 1\right)$$

Include attenuation

$$I = I_a k_a + f_{att} I_p k_d (\mathbf{N} \cdot \mathbf{L})$$

Specular Reflection

Depends on the angle between the reflection and viewing ray

Specular Reflection

• Compute by simple linear algebra

Hzürich

E

 $\mathbf{R} = \mathbf{N}\cos\theta + \mathbf{S}$ $\mathbf{R} = 2\mathbf{N}\cos\theta - \mathbf{L} = 2\mathbf{N}(\mathbf{N}\cdot\mathbf{L}) - \mathbf{L}$ $\cos\alpha = \mathbf{R}\cdot\mathbf{V} = (2\mathbf{N}(\mathbf{N}\cdot\mathbf{L}) - \mathbf{L})\cdot\mathbf{V}$

Ambient + Diffuse + Specular

Phong Illumination Model

 Approximates specular reflection by cosine powers

 $I_{\lambda} = I_{a_{\lambda}} k_a O_{d_{\lambda}} + f_{att} I_{p_{\lambda}} \left[k_d O_{d_{\lambda}} (\mathbf{N} \cdot \mathbf{L}) + k_s (\mathbf{R} \cdot \mathbf{V})^n \right]$

Extensions

• Specular colors

$$I_{\lambda} = I_{a_{\lambda}}k_{a} + f_{att}I_{p_{\lambda}} [k_{d}(\mathbf{N} \cdot \mathbf{L}) + k_{s}(\mathbf{R} \cdot \mathbf{V})^{n}]$$

$$Material dependent constants$$

Extensions

• Specular colors

$$I_{\lambda} = I_{a_{\lambda}}k_a + f_{att}I_{p_{\lambda}}\left[k_d(\mathbf{N}\cdot\mathbf{L}) + k_s(\mathbf{R}\cdot\mathbf{V})^n\right]$$

- Halfway vector (faster) $\cos^n \beta = (\mathbf{N} \cdot \mathbf{H})^n \qquad \mathbf{H} = \frac{\mathbf{L} + \mathbf{V}}{\|\mathbf{L} + \mathbf{V}\|}$
- Multiple light sources

ETH zürich

$$I_{\lambda} = I_{a_{\lambda}}k_{a} + \sum_{1 \le i \le m} f_{att_{i}}I_{p_{\lambda_{i}}} \left[k_{d}(\mathbf{N} \cdot \mathbf{L}_{i}) + k_{s}(\mathbf{R}_{i} \cdot \mathbf{V})^{n}\right]$$

R

H

End

