Scan Conversion Prof. Dr. Markus Gross

Scan Conversion

- Also called rasterization, an old problem

Stitchery (2D)

Lego (3D)

Scan Conversion of Lines

- Generation of discrete pixel values
- Approximation by a finite number of pixels

Scan Conversion of Lines

- Bresenham Line
- Choose the closest pixel at each intersection

Scan Conversion of Lines

- Bresenham Line
- Goal: Fast decision which pixel has to be drawn next
- Criterion: position of the midpoint m with respect to the intersection point \mathbf{q}

Previous pixel Choices for current pixel

Scan Conversion of Lines

- Bresenham Line
- Goal: Fast decision which pixel has to be drawn next

Previous Choices for pixel current pixel

Implicit equation of the straight line
$f(x, y)=a x+b y+c=0$
$d=f(\mathbf{m})=f\left(x_{p}+1, y_{p}+1 / 2\right)$
$d>0 \Rightarrow$ Select pixel NE
$d<0 \Rightarrow$ Select pixel E

Scan Conversion of Lines

- Bresenham Line - update criterion

Previous
pixel Choices for Choices for
current pixel next pixel

Scan Conversion of Lines

- Bresenham Line - update criterion, for \mathbf{E}

Previous Choices for Choices for

$$
\begin{aligned}
d_{\text {old }} & =f\left(x_{p}+1, y_{p}+1 / 2\right) \\
& =a\left(x_{p}+1\right)+b\left(y_{p}+1 / 2\right)+c \\
d_{\text {new }} & =f\left(x_{p}+2, y_{p}+1 / 2\right) \\
& =a\left(x_{p}+2\right)+b\left(y_{p}+1 / 2\right)+c
\end{aligned}
$$

$$
d_{\text {new }}-d_{\text {old }}=a=\Delta y
$$ pixel current pixel next pixel

Scan Conversion of Lines

- Bresenham Line - update criterion, for NE

Previous Choices for Choices for

$$
\begin{aligned}
d_{\text {old }} & =f\left(x_{p}+1, y_{p}+1 / 2\right) \\
& =a\left(x_{p}+1\right)+b\left(y_{p}+1 / 2\right)+c \\
d_{\text {new }} & =f\left(x_{p}+2, y_{p}+3 / 2\right) \\
& =a\left(x_{p}+2\right)+b\left(y_{p}+3 / 2\right)+c
\end{aligned}
$$

$$
d_{\mathrm{new}}-d_{\mathrm{old}}=a+b=\Delta y-\Delta x
$$ pixel current pixel next pixel

Scan Conversion of Lines

- Bresenham Line - update criterion

Previous Choices for Choices for pixel current pixel next pixel

Scan Conversion of Polygons

- Filled polygons (especially triangles) are the most important graphics primitives
- GPUs can process up to 50 millions of triangles/second

Scan Conversion of Polygons

- Spatial coherence
- Straightforward solution: inside test for each pixel - inefficient!
- Instead: process scan-line after scan-line
- Span: group of picked pixels inside a scan-line

Scan Conversion of Polygons

- Spans

Span 1: from a to b

Scan Conversion of Polygons

- Algorithm

1. Calculate all intersections on the scan line
2. Sort the intersection points by ascending xcoordinates
3. Fill all spans in between two consecutive intersection points if the parity is odd.

Scan Conversion of Polygons

- Algorithm parity even odd even odd even

