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Overview

• Coordinate Systems

• Bernstein Polynomials

• Bézier Curves – Properties

• Derivatives

• Piecewise Curves
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Local Coordinate Systems
• Vectors and Points bold: e.g. x, y

• Curve x(u) as a map of the 1D parameter space u

into 2D or 3D
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Local Coordinate Systems

• Surface x(u,v) as a map of a subregion of (u,v) into 

E
2

or E
3

• Subdivision of parameter space into disjoint 

segments (knots):

• Surfaces are subdivided by so-called knotlines:
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Bézier Curves
• x(t) = p(t) given by a Bernstein basis expansion:

• Bernstein polynomial of degree n:

• Binomial coefficients:
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JAVA-Applet

• Bernstein polynomial:

– Global support

– Positive definite

– Partition of unity

– Different degrees



Construction and Properties
• Cubic curve (n = 3):

– Coefficients b0,…,bn are called Bézier-points or control 
points.

– Set of control points defines the so-called control polygon

• Properties of  Bernstein polynomials:

– Partition of unity

– Positivity (positive definite)

– Recursion

– Symmetry
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JAVA-Applet

• The parametric Bézier Curve:

– Cubic curves

– piecewise definitions

– continuity

– design property



Construction and Properties
Distinguish between degree (highest order of the 

polynomial)  and order=degree + 1

• Properties of Bézier-Curves:

– affine invariance: affine transform of all points on 

the curve is accomplished by the affine transform 

of its control points.

– convex hull property: the curve lies in the convex 

hull of its control polygon.
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Construction and Properties
• Properties of Bézier-Curves:

– design property: Control polygon gives a rough 
sketch of the curve.

– endpoint interpolation: Since

the curve interpolates the endpoints b0 and bn.

– variation diminishing property: The maximum
number of intersections of a line with the curve
is less or equal to the number of intersections
with its control polygon.
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Variation Diminishing Property
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Convex Hull Property
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deCasteljau Algorithm
• Let b0, b1, b2 be 3 control points:

• We obtain:

• Insert:
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deCasteljau Algorithm
• Recursive computation of a point on the curve using 

a systolic array:

– Given: n+1 control points b0, b1,…, bn

– Recursion:

 Point on the Bézier curve with
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deCasteljau Algorithm

• Algorithm computes a triangular representation:

 successive linear interpolation, “corner cutting”

3

0

2

1

1

23

2

0

1

12

1

01

0

bbbb

bbb

bb

b O(n2) costs



deCasteljau Algorithm
• A planar cubic Bézier curve at t = ½:

The student might reflect the situation, where 

control points are given with bi = (bix, biy, biz)
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deCasteljau Algorithm



JAVA-Applet

• deCasteljau algorithm:

– Successive linear interpolation

– Curve segments

– Endpoint interpolation

– Tangency

– Different degrees



Derivatives of Bézier Curves
• Computation of derivatives:

• Recurrence relation of Bernstein polynomials:

• For the curve:

• Forward differencing operator  :
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21

1. Bézier 
Curves

Derivatives of Bézier Curves

• Generalization to higher order derivatives using a 

recursive forward difference operator

r of degree r:

• In a non-recursive form:
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The derivative of a Bézier curve is a Bézier curve of
degree n-1



Derivatives of Bézier Curves
• Derivatives at t = 0 and t = 1:

• b0 and b1 define the tangent in t = 0

• Computation using the deCasteljau algorithm

• Related issues: Subdivision and degree elevation of 
a curve
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Bézier Curve and Derivative



OpenGL Curves

• Define a so-called Evaluator (glMap)

• Enable it (glEnable)

• GL_MAP_VERTEX_3: 3D control points and vertices

• glEvalCoord1(u) replaces glVertex*()

• Works for geometry, texture, color, normals



OpenGL Curves
• Using glMap1f() and glEvalCoord1f()

GLfloat ctrlpoints[4][3] = {

{-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0}, 

{ 2.0, -4.0, 0.0}, { 4.0, 4.0, 0.0}};

void myinit(void)

{

glClearColor(0.0, 0.0, 0.0, 1.0);

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4,

&ctrlpoints[0][0]); /* u0, u1, res, order */

glEnable(GL_MAP1_VERTEX_3);

glShadeModel(GL_FLAT);

}



OpenGL Curves
void display(void)

{

int i;

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

glBegin(GL_LINE_STRIP);

for (i = 0; i <= 30; i++) 

glEvalCoord1f((GLfloat) i/30.0);

glEnd();

/* The following code displays the control points as dots. */

glPointSize(5.0);

glColor3f(1.0, 1.0, 0.0);

glBegin(GL_POINTS);

for (i = 0; i < 4; i++) 

glVertex3fv(&ctrlpoints[i][0]);

glEnd();

glFlush();

}



Piecewise Bézier Curves

• Polynomial degree aligned to number of control 

points

• Variant: Piecewise smooth curve definitions: Splines 

(piecewise curves)

• Problem: Continuity at the curve boundaries

• Global parameter u to describe curve



Piecewise Bézier Curves

• Segment boundaries (knots) u0 <…< uL define 

Intervals [ui,ui+1].

• Local Parameter t to describe the curve in each 

interval

• Segmental definition: s(u) = si(t).

• Computation of the curve derivatives
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Piecewise Bézier Curves
• Curve in [u0, u2], decomposed into 2 Bézier-

Segments b0,…,bn in [u0, u1] and bn,…,b2n in [u1, u2]

• Enforce Cr-Continuity at segment boundaries by the 

following conditions:

where t = (u - u0) / (u1 - u0) stands for the local 

Coordinate of u2 relative to [u0, u1]

• Control points by extrapolation of the first segment 

using the deCasteljau-Algorithm
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Piecewise Bézier Curves

Example: C1-Continuity:

• Control points bn-1, bn and bn+1 influence first 

derivative in bn

 co-linearity at ratio (u1 - u0) / (u2 - u1) = 0 / 1

• Since

• C1-Continuity contains the first 2 control

points of the following segment
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JAVA-Applet

• Derivatives of a Bézier curve:

– Co-linearity of control points

– Relationship between individual curve 

segments



Matrix Form

• x(t) as a curve of type:

• As an inner product:
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Matrix Form
• Basis transform into a monomial representation with 

M = {mij}:

• For Bernstein polynomials we obtain     
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Matrix Form

• For n = 3:

• Matrix M is the key to the forward-differencing

method.
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Spline Interpolation

• Goal: Interpolate a set of  points p0,…,pn using basis 

functions

• Interpolation with Monomials:

– Canonical form of polynomial interpolation

with x(ti) = pi and t
j
: Monomial of degree j.
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Spline Interpolation
• Solution is given by a system of linear equations

• Matrix form: (Vandermonde)

Vandermonde matrices are notoriously 
ill-conditioned
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deCasteljau Algorithm
• The notion of blossoms:

• Blossoming as a generalization of the deCasteljau-
algorithm

• Increasing popularity

• Interpolation for different parameter values
t1, t2, t3 traces out a region in R3:
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deCasteljau Algorithm
• The trivariate function f(t1, t2, t3) is called blossom of 

the curve b3(t)

We obtain b[0,0,0] = b0 and b[1,1,1] = b3

• Evaluation of [t1, t2, t3] = [0,0,1]:

to get b2 := b[0,1,1]
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deCasteljau Algorithm

• To get the curve: Set t1 = t2 = t3 = t:

t<r>: t r-times as argument

• Bézier control points in blossom notation:
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