
Bézier Curves

Prof. Dr. Markus Gross

Overview

• Coordinate Systems

• Bernstein Polynomials

• Bézier Curves – Properties

• Derivatives

• Piecewise Curves

Literature
• Gerald Farin: Curves and Surfaces for Computer Aided Geometric

Design. Third ed., Academic Press, 1992

• Gerald Farin: NURB Curves and Surfaces. A K Peters, 1995

• Wolfgang Böhm et al.: A Survey of Curve and Surface Methods in
CAGD. Computer Aided Geometric Design 1, pp. 1-60, 1984

• Carl deBoor: A Practical Guide to Splines. Springer, 1978

• Charles Michelli: Mathematical Aspects of Geometric Modeling.
SIAM, Philadelphia, 1995

• Christoph Hoffmann: Geometric and Solid Modeling. An
Introduction. Morgan Kaufmann, 1989

• R. Barthels, J. Beatty, A. Barsky: An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling. Morgan Kaufmann,
1987

• A. Rockwood, P. Chambers: Interactive Curves and Surfaces.
Morgan Kaufmann, 1996

Local Coordinate Systems
• Vectors and Points bold: e.g. x, y

• Curve x(u) as a map of the 1D parameter space u

into 2D or 3D

=

=
v

u
;

z

y

x

ux

Tuz,uy,uxu))()()(()(=x

Local Coordinate Systems

• Surface x(u,v) as a map of a subregion of (u,v) into

E
2

or E
3

• Subdivision of parameter space into disjoint

segments (knots):

• Surfaces are subdivided by so-called knotlines:

and

Tu,vz,u,vy,u,vxu,v))()()(()(=x

puuu
10

puuu
10 qvvv

10

Bézier Curves
• x(t) = p(t) given by a Bernstein basis expansion:

• Bernstein polynomial of degree n:

• Binomial coefficients:

)()()(tBtBt n

nn

n
bbx ++=

00

00

1

−

= −

)(

)()(

tB:ni,i

tt
i

n
tB

n

i

inin

i

−=

else

ni
!ini!

n!

i

n

0

0
)(

JAVA-Applet

• Bernstein polynomial:

– Global support

– Positive definite

– Partition of unity

– Different degrees

Construction and Properties
• Cubic curve (n = 3):

– Coefficients b0,…,bn are called Bézier-points or control
points.

– Set of control points defines the so-called control polygon

• Properties of Bernstein polynomials:

– Partition of unity

– Positivity (positive definite)

– Recursion

– Symmetry

3

3

2

2

2

1

3

0
13131 ttttttt bbbbx +−+−+−=)()()()(

JAVA-Applet

• The parametric Bézier Curve:

– Cubic curves

– piecewise definitions

– continuity

– design property

Construction and Properties
Distinguish between degree (highest order of the

polynomial) and order=degree + 1

• Properties of Bézier-Curves:

– affine invariance: affine transform of all points on

the curve is accomplished by the affine transform

of its control points.

– convex hull property: the curve lies in the convex

hull of its control polygon.

}{)(10
11

==
==

n

i
ii

n

i
i

,Pconv λλλ
i

p:

Construction and Properties
• Properties of Bézier-Curves:

– design property: Control polygon gives a rough
sketch of the curve.

– endpoint interpolation: Since

the curve interpolates the endpoints b0 and bn.

– variation diminishing property: The maximum
number of intersections of a line with the curve
is less or equal to the number of intersections
with its control polygon.

110
0

==)()(n

n

n BB

Variation Diminishing Property

b0

b1

b2

b3

b4

b5

Convex Hull Property

b0

b1

b2

b3

b4

b5

deCasteljau Algorithm
• Let b0, b1, b2 be 3 control points:

• We obtain:

• Insert:
2

2

10

22

0

2

2

00

2

0

1

1

1

0

2

0

21

1

1

10

1

0

121

10

1

1

1

bbbb

bbbb

bbb

bbb

bbb

ttttt

,

ttttt

ttt

ttt

+−+−=

==

+−=

+−=

+−=

)()()(

)()(

)()()()(

)()(

)()(

deCasteljau Algorithm
• Recursive computation of a point on the curve using

a systolic array:

– Given: n+1 control points b0, b1,…, bn

– Recursion:

 Point on the Bézier curve with

rn,,in,,r

t

ttttt

−==

=

+−= −

+

−

 01

1
0

1

1

1

ii

r

i

r

i

r

i

bb

bbb

)(

)()()()(

deCasteljau Algorithm

• Algorithm computes a triangular representation:

 successive linear interpolation, “corner cutting”

3

0

2

1

1

23

2

0

1

12

1

01

0

bbbb

bbb

bb

b O(n2) costs

deCasteljau Algorithm
• A planar cubic Bézier curve at t = ½:

The student might reflect the situation, where

control points are given with bi = (bix, biy, biz)

23

27

23

5

1

6

0

4

23

2

2

4

2

8

1

0

2

0

0

0

/

/

/

/

deCasteljau Algorithm

JAVA-Applet

• deCasteljau algorithm:

– Successive linear interpolation

– Curve segments

– Endpoint interpolation

– Tangency

– Different degrees

Derivatives of Bézier Curves
• Computation of derivatives:

• Recurrence relation of Bernstein polynomials:

• For the curve:

• Forward differencing operator :

())()()(tBtBntB
dt

d n

i

n

i

n

i

11

1

−−

−
−=

()
=

−−

−
−=

n

j

n

j

n

j
tBtBnt

dt

d

0

11

1 j

n
bb)()()(

−

=

−

+

=

−=
1

0

1

3

1
n

j

n

j
tBnt

dt

d

R

)()(
j

n

jjjj

bb

bbbb

Δ

ΔΔ

21

1. Bézier
Curves

Derivatives of Bézier Curves

• Generalization to higher order derivatives using a

recursive forward difference operator

r of degree r:

• In a non-recursive form:

jjj
bbb

1

1

1 −

+

− −= rrr ΔΔΔ

−

=

−

=
+

−

−
=

−

=

rn

j

rn

j

r
r

r

r

j

jrr

tB
r)!(n

n!
t

dt

d

j

r

0

0

1

)()(

)(

j

n

iji

bb

bb

Δ

Δ

The derivative of a Bézier curve is a Bézier curve of
degree n-1

Derivatives of Bézier Curves
• Derivatives at t = 0 and t = 1:

• b0 and b1 define the tangent in t = 0

• Computation using the deCasteljau algorithm

• Related issues: Subdivision and degree elevation of
a curve

rn

n

n

bb

bb

−
−

=

−
=

r

r

r

r

r

r

r)!(n

n!

dt

d

r)!(n

n!

dt

d

Δ

Δ

)(

)(

1

0
0

Bézier Curve and Derivative

OpenGL Curves

• Define a so-called Evaluator (glMap)

• Enable it (glEnable)

• GL_MAP_VERTEX_3: 3D control points and vertices

• glEvalCoord1(u) replaces glVertex*()

• Works for geometry, texture, color, normals

OpenGL Curves
• Using glMap1f() and glEvalCoord1f()

GLfloat ctrlpoints[4][3] = {

{-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},

{ 2.0, -4.0, 0.0}, { 4.0, 4.0, 0.0}};

void myinit(void)

{

glClearColor(0.0, 0.0, 0.0, 1.0);

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4,

&ctrlpoints[0][0]); /* u0, u1, res, order */

glEnable(GL_MAP1_VERTEX_3);

glShadeModel(GL_FLAT);

}

OpenGL Curves
void display(void)

{

int i;

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

glBegin(GL_LINE_STRIP);

for (i = 0; i <= 30; i++)

glEvalCoord1f((GLfloat) i/30.0);

glEnd();

/* The following code displays the control points as dots. */

glPointSize(5.0);

glColor3f(1.0, 1.0, 0.0);

glBegin(GL_POINTS);

for (i = 0; i < 4; i++)

glVertex3fv(&ctrlpoints[i][0]);

glEnd();

glFlush();

}

Piecewise Bézier Curves

• Polynomial degree aligned to number of control

points

• Variant: Piecewise smooth curve definitions: Splines

(piecewise curves)

• Problem: Continuity at the curve boundaries

• Global parameter u to describe curve

Piecewise Bézier Curves

• Segment boundaries (knots) u0 <…< uL define

Intervals [ui,ui+1].

• Local Parameter t to describe the curve in each

interval

• Segmental definition: s(u) = si(t).

• Computation of the curve derivatives

i

i

ii

i
uu

uu

uu
t

Δ

−
=

−

−
=

+1

dt

tds

du

dt

dt

tds

du

uds i

i

i
)()()(

Δ

1
==

Piecewise Bézier Curves
• Curve in [u0, u2], decomposed into 2 Bézier-

Segments b0,…,bn in [u0, u1] and bn,…,b2n in [u1, u2]

• Enforce Cr-Continuity at segment boundaries by the

following conditions:

where t = (u - u0) / (u1 - u0) stands for the local

Coordinate of u2 relative to [u0, u1]

• Control points by extrapolation of the first segment

using the deCasteljau-Algorithm

r,,it 0==
−+

)(i

inin
bb

Piecewise Bézier Curves

Example: C1-Continuity:

• Control points bn-1, bn and bn+1 influence first

derivative in bn

 co-linearity at ratio (u1 - u0) / (u2 - u1) = 0 / 1

• Since

• C1-Continuity contains the first 2 control

points of the following segment

nn
bb ΔΔΔΔ

011
=

−

JAVA-Applet

• Derivatives of a Bézier curve:

– Co-linearity of control points

– Relationship between individual curve

segments

Matrix Form

• x(t) as a curve of type:

• As an inner product:

)()(tCctx
i

n

i
i

=

=
0

=

)(

)(

)(

tC

tC

cctx

n

n
0

0

Matrix Form
• Basis transform into a monomial representation with

M = {mij}:

• For Bernstein polynomials we obtain

=

n

nnn

n

n t

t

mm

mm

tC

tC

0

0

0000

)(

)(

−= −

i

j

j

n
m ij

ij
)(1

Matrix Form

• For n = 3:

• Matrix M is the key to the forward-differencing

method.

−

−

−−

=

1000

3300

3630

1331

M

Spline Interpolation

• Goal: Interpolate a set of points p0,…,pn using basis

functions

• Interpolation with Monomials:

– Canonical form of polynomial interpolation

with x(ti) = pi and t
j
: Monomial of degree j.

=

=
n

j

j

j
tt

0

ax)(

Spline Interpolation
• Solution is given by a system of linear equations

• Matrix form: (Vandermonde)

Vandermonde matrices are notoriously
ill-conditioned

=

==
n

j

j

ijii
n,i,tt

0

0][)()(axp

=

nn

n

nn

n

tt

tt

p

p

a

a

0000

1

1

deCasteljau Algorithm
• The notion of blossoms:

• Blossoming as a generalization of the deCasteljau-
algorithm

• Increasing popularity

• Interpolation for different parameter values
t1, t2, t3 traces out a region in R3:

][][][

][][

][

321

3

021

2

11

1

23

21

1

01

1

12

1

1

01

0

t,t,tt,tt

t,tt

t

bbbb

bbb

bb

b

deCasteljau Algorithm
• The trivariate function f(t1, t2, t3) is called blossom of

the curve b3(t)

We obtain b[0,0,0] = b0 and b[1,1,1] = b3

• Evaluation of [t1, t2, t3] = [0,0,1]:

to get b2 := b[0,1,1]

][100
1123

012

01

0

,,bbbbb

bbb

bb

b

=

deCasteljau Algorithm

• To get the curve: Set t1 = t2 = t3 = t:

t<r>: t r-times as argument

• Bézier control points in blossom notation:

][][][][

][][][

][][

][

tt,t,t,t,,t,,,

tt,,,t,,,

t,,,,

,,

bbbbb

bbbb

bbb

bb

111111

010110

00100

000

3

2

1

0

=

=

=

=

][−= iin

i
,10bb

	Folie 1: Bézier Curves
	Folie 2: Overview
	Folie 3: Literature
	Folie 4: Local Coordinate Systems
	Folie 5: Local Coordinate Systems
	Folie 6: Bézier Curves
	Folie 7: JAVA-Applet
	Folie 8: Construction and Properties
	Folie 9: JAVA-Applet
	Folie 10: Construction and Properties
	Folie 11: Construction and Properties
	Folie 12: Variation Diminishing Property
	Folie 13: Convex Hull Property
	Folie 14: deCasteljau Algorithm
	Folie 15: deCasteljau Algorithm
	Folie 16: deCasteljau Algorithm
	Folie 17: deCasteljau Algorithm
	Folie 18: deCasteljau Algorithm
	Folie 19: JAVA-Applet
	Folie 20: Derivatives of Bézier Curves
	Folie 21: Derivatives of Bézier Curves
	Folie 22: Derivatives of Bézier Curves
	Folie 23: Bézier Curve and Derivative
	Folie 24: OpenGL Curves
	Folie 25: OpenGL Curves
	Folie 26: OpenGL Curves
	Folie 27: Piecewise Bézier Curves
	Folie 28: Piecewise Bézier Curves
	Folie 29: Piecewise Bézier Curves
	Folie 30: Piecewise Bézier Curves
	Folie 31: JAVA-Applet
	Folie 32: Matrix Form
	Folie 33: Matrix Form
	Folie 34: Matrix Form
	Folie 35: Spline Interpolation
	Folie 36: Spline Interpolation
	Folie 37: deCasteljau Algorithm
	Folie 38: deCasteljau Algorithm
	Folie 39: deCasteljau Algorithm

