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Overview

• B-Spline Basis Functions

• B-Spline Curves

• deBoor Algorithm

• End Conditions

• Interpolation



B-Spline Curves

• Disadvantages of Bézier curves:

– Global support of the basis functions

– Insertion of new control points comes along with 

degree elevation

– C
r
-continuity between individual segments of a Bézier

curve
 B-Spline bases help to overcome these problems

(Local support, continuity control,

arbitrary knot vector)



JAVA-Applet
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 B-Spline bases help to overcome these problems

(Local support, continuity control,

arbitrary knot vector)



B-Spline Bases of

Different Degree



B-Spline Functions
• Definition:

– A B-Spline curve s(u) built from piecewise polynomial 

bases

– Coefficients di of the B-Spline basis function are called 

de Boor points

– Bases are piecewise, recursively defined polynomials 

over a sequence of knots u0 <u1 <u2 <….

– Defined by a knot vector T = u = [u0,…,uk+n+1]


=

=
k

n

i
uNu

0i

)()(
i

ds



JAVA-Applet

• B-Spline bases:

– Different degrees

– Piecewise polynomial

– Local support

– uniform / non-uniform

– B-Splines-Bernstein polynomials



B-Spline Functions

• Properties:

– Partition of Unity:

– Positivity:

– Compact support:

– Continuity: is (n-1) times continuously

differentiable
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B-Spline Functions
• From the recurrence formula we obtain:
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2. B-
Spline 
Curves

B-Spline Functions

• Recurrence relation:

where:

The student might verify that B-Spline bases of degree n 
have support over n+1 Intervals of the knot vector 
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2. B-
Spline 
Curves

B-Spline Functions

So-called B-Spline filters are widely use in signal processing. 
Cardinal B-Splines over uniform knot sequences can be 
computed using the convolution operator as: 

functionbox:N

dttxNtNNNN

x

nnn

i

−

−== 
−−

0

0

0101 )()(



B-Spline Functions
• uniform B-Splines vs. non-uniform B-Splines

• Exception:
multiple knots of order p with uj = … = uj+p-1 lead to C

n-p

continuous curves (p < n+1)

• Properties:

 variation diminishing property: More restrictive,
for n+1 adjacent deBoor points

 convex hull property: More restrictive, 
for n+1 adjacent deBoor points

Continuity: Curve is globally C
n-1

continuous.



deBoor Algorithm
• Generalization of deCasteljau’s method.

• Evaluation of a point on the curve at u = t.

• For a given t  [ul,ul+1] all              are vanishing in spite 

of i  {l-n,…,l}.

• Point s(t) computed by successive linear interpolation

• Control point in k-th step

This is a direct consequence of the local support of the bases.
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deBoor Algorithm 

(non-uniform)



JAVA-Applet

• deBoor algorithm:

– Successive linear interpolation

– Local support (Principles of locality)

– Bernstein polynomials

– Different end conditions



deBoor Algorithm

• Special case: First and last knot have multiplicity of n+1:

0 = u0 = u1 = … = un < un+1 = un+2 = … = u2n+1

• with un+k = 1 for k  [1,…,n+1] we obtain:

(de Casteljau-Algorithm)

)()()()( uuuuu 1

1

1 1 −

+

− −+= k

i

k

i

k

i
ddd



End Conditions
• Open curves:

– Design of endpoint interpolating B-Spline curves of degree n
by knot vectors of type:

u = T = (u0 = u1 = … = un-1 = un , uk = uk+1 = … = uk+n)

– Sequencing of knots influences the sweep of the curve

– Example: Cubic bases with T1 = (0,0,0,0,1,2,3,4,5,5,5,5)
and T2 = (0,0,0,0,1,2.75,3.25,4,5,5,5,5):

In both cases we get different bases
at the boundaries )()( 510 3
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End Conditions
• Closed curves:

– Periodic repetition of the deBoor points and knots by 
d0 = dk+1

– The knot vector:
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End Conditions
• Parametric B-Spline curve:

• Support of the bases:

][  ),()(
10

0
−

=

= n

n

i

k

i

u,uuuNu
i

ds

][

][

][

...

][

][

][

nk

n

k

–nkk

n

k

–nkkk

n

k

n

n

n

n

n

n

u,...,u,uN

u,...,u,u,uN

u,...,u,u,u,uN

u,...,uN

u,...,uN

u,...,uN

0

1011

20122

322

211

100













−−

−−−

+

+

+



B-Spline Interpolation

• Interpolate a given set of k+1 points pj

• Let uj  [u0,..,uk+n+1] a straightforward insertion yields

• However, the curve needs n+1 active bases in the 
interval of definition

• System is under-determined

• We need more control points d0,…,dk+n-1
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Interpolating B-Spline

Endpoints p3 = d0 and p8 = d7 as well as tangents
( qa = d1 and rb = d6 ) have to be preset

p3 = 
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p8 = 
d7

q3 = 
d1

r8 = d6
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B-Spline Interpolation

• For endpoint interpolating splines we need n+k

equations, whereof k-1 define the interior intervals and 

n+1 the boundaries

• Interpolation costs two equations:

• Others can be used to specify tangency, curvature etc.
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JAVA-Applet

• Illustration of the interpolation problem



B-Spline Interpolation

• For a cubic:
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