
2. B-Spline Curves

Prof. Dr. Markus Gross

Overview

• B-Spline Basis Functions

• B-Spline Curves

• deBoor Algorithm

• End Conditions

• Interpolation

B-Spline Curves

• Disadvantages of Bézier curves:

– Global support of the basis functions

– Insertion of new control points comes along with

degree elevation

– C
r
-continuity between individual segments of a Bézier

curve
 B-Spline bases help to overcome these problems

(Local support, continuity control,

arbitrary knot vector)

JAVA-Applet

• Disadvantages of Bézier curves:

– Global support of the basis functions

– Insertion of new control points comes along with

degree elevation

– C
r
-continuity between individual segments of a Bézier

curve
 B-Spline bases help to overcome these problems

(Local support, continuity control,

arbitrary knot vector)

B-Spline Bases of

Different Degree

B-Spline Functions
• Definition:

– A B-Spline curve s(u) built from piecewise polynomial

bases

– Coefficients di of the B-Spline basis function are called

de Boor points

– Bases are piecewise, recursively defined polynomials

over a sequence of knots u0 <u1 <u2 <….

– Defined by a knot vector T = u = [u0,…,uk+n+1]


=

=
k

n

i
uNu

0i

)()(
i

ds

JAVA-Applet

• B-Spline bases:

– Different degrees

– Piecewise polynomial

– Local support

– uniform / non-uniform

– B-Splines-Bernstein polynomials

B-Spline Functions

• Properties:

– Partition of Unity:

– Positivity:

– Compact support:

– Continuity: is (n-1) times continuously

differentiable

 
i

n

i
uN 1)(

0)(uNn

i

][)(
1

0
++

=
nii

n

i
u,uu,uN

n

i
N

B-Spline Functions
• From the recurrence formula we obtain:
















−

−


−

−


−

−


−

−
+

−

−


−

−


−

−


−

−

=

−

−
+

−

−
=










−

−


−

−

=

++
++

+

++

+

++
++

+

++

+

++

+

+

+
++

+
++

+

+

++
++

+

+
+

][

][

][

)()()(

][

][

)(

32
23

3

13

3

21
12

1

13

3

12

2

2

1
12

1

1
13

3

2

2

21
12

2

1
11

ii
ii

i

ii

i

ii
ii

i

ii

i

ii

i

ii

i

ii
ii

i

ii

i

i
ii

i1

i
ii

i

i

ii
ii

i

ii
ii

i

i

u,ui
uu

uu

uu

uu

u,ui,
uu

uu

uu

uu

uu

uu

uu

uu

u,ui
uu

uu

uu

uu

uN
uu

uu
uN

uu

uu
uN

u,uu,
uu

uu

u,uu,
uu

uu

uN

2. B-
Spline
Curves

B-Spline Functions

• Recurrence relation:

where:

The student might verify that B-Spline bases of degree n
have support over n+1 Intervals of the knot vector

11

1

1

1

1

+++

−

+

++
+

−

−
−+

−
−=

ini

n

i

ni
ini

n

i

i

n

i uu

uN
uu

uu

uN
uuuN

)(
)(

)(
)()(



 

=
+

 else,

u,uu,
uN

ii

i 0

1
10
][

)(

2. B-
Spline
Curves

B-Spline Functions

So-called B-Spline filters are widely use in signal processing.
Cardinal B-Splines over uniform knot sequences can be
computed using the convolution operator as:

functionbox:N

dttxNtNNNN

x

nnn

i

−

−== 
−−

0

0

0101)()(

B-Spline Functions
• uniform B-Splines vs. non-uniform B-Splines

• Exception:
multiple knots of order p with uj = … = uj+p-1 lead to C

n-p

continuous curves (p < n+1)

• Properties:

 variation diminishing property: More restrictive,
for n+1 adjacent deBoor points

 convex hull property: More restrictive,
for n+1 adjacent deBoor points

Continuity: Curve is globally C
n-1

continuous.

deBoor Algorithm
• Generalization of deCasteljau’s method.

• Evaluation of a point on the curve at u = t.

• For a given t  [ul,ul+1] all are vanishing in spite

of i  {l-n,…,l}.

• Point s(t) computed by successive linear interpolation

• Control point in k-th step

This is a direct consequence of the local support of the bases.

)(uNn

i

)(

)(

t,where

uu

ut
aaa

ikni

ik

i

k

i

k

i

sddd

ddd

n

nii

k

i

k

i

k

i

==

−

−
=+−=

−++

−−

−

0

1

11

1
1

deBoor Algorithm

(non-uniform)

JAVA-Applet

• deBoor algorithm:

– Successive linear interpolation

– Local support (Principles of locality)

– Bernstein polynomials

– Different end conditions

deBoor Algorithm

• Special case: First and last knot have multiplicity of n+1:

0 = u0 = u1 = … = un < un+1 = un+2 = … = u2n+1

• with un+k = 1 for k  [1,…,n+1] we obtain:

(de Casteljau-Algorithm)

)()()()(uuuuu 1

1

1 1 −

+

− −+= k

i

k

i

k

i
ddd

End Conditions
• Open curves:

– Design of endpoint interpolating B-Spline curves of degree n
by knot vectors of type:

u = T = (u0 = u1 = … = un-1 = un , uk = uk+1 = … = uk+n)

– Sequencing of knots influences the sweep of the curve

– Example: Cubic bases with T1 = (0,0,0,0,1,2,3,4,5,5,5,5)
and T2 = (0,0,0,0,1,2.75,3.25,4,5,5,5,5):

In both cases we get different bases
at the boundaries)()(510 3

0

3

0
NN ==

End Conditions
• Closed curves:

– Periodic repetition of the deBoor points and knots by
d0 = dk+1

– The knot vector:

...

u–u uu

u–u uu

uu

kk

kk

k

)(

)(

1223

0112

01

+=

+=

=

++

++

+

T = (u0 , u1 ,…, uk , uk+1 = u0 , uk+2 = u2 ,…, uk+n = un–1)

End Conditions
• Parametric B-Spline curve:

• Support of the bases:

][),()(
10

0
−

=

= n

n

i

k

i

u,uuuNu
i

ds

][

][

][

...

][

][

][

nk

n

k

–nkk

n

k

–nkkk

n

k

n

n

n

n

n

n

u,...,u,uN

u,...,u,u,uN

u,...,u,u,u,uN

u,...,uN

u,...,uN

u,...,uN

0

1011

20122

322

211

100













−−

−−−

+

+

+

B-Spline Interpolation

• Interpolate a given set of k+1 points pj

• Let uj  [u0,..,uk+n+1] a straightforward insertion yields

• However, the curve needs n+1 active bases in the
interval of definition

• System is under-determined

• We need more control points d0,…,dk+n-1

ji
pds ==

=

)()(
j

n

i

k

i
j

uNu
0

ji
pds == 

+

=

)()(
j

n

i

–nk

i
j

uNu
1

0

Interpolating B-Spline

Endpoints p3 = d0 and p8 = d7 as well as tangents
(qa = d1 and rb = d6) have to be preset

p3 =
d0

p8 =
d7

q3 =
d1

r8 = d6

d
3

d
4d

5

p
4

p
5

p
6

p
7

d
2

u
3

u
4

u
7

u
8

B-Spline Interpolation

• For endpoint interpolating splines we need n+k

equations, whereof k-1 define the interior intervals and

n+1 the boundaries

• Interpolation costs two equations:

• Others can be used to specify tangency, curvature etc.

knk
pdpd ==

−+ 100
,

12010 −+−+
−=−=

nknkk
ddtddt ,

JAVA-Applet

• Illustration of the interpolation problem

B-Spline Interpolation

• For a cubic:





























=















































































−

−

+

−

−+ k

k

k

kn
p

t

p

p

t

p

d

d

d

1

1

0

0

1

1

0

10

11

11

01







...

...

...

.nk

	Folie 1: 2. B-Spline Curves
	Folie 2: Overview
	Folie 3: B-Spline Curves
	Folie 4: JAVA-Applet
	Folie 5: B-Spline Bases of Different Degree
	Folie 6: B-Spline Functions
	Folie 7: JAVA-Applet
	Folie 8: B-Spline Functions
	Folie 9: B-Spline Functions
	Folie 10: B-Spline Functions
	Folie 11: B-Spline Functions
	Folie 12: B-Spline Functions
	Folie 13: deBoor Algorithm
	Folie 14: deBoor Algorithm (non-uniform)
	Folie 15: JAVA-Applet
	Folie 16: deBoor Algorithm
	Folie 17: End Conditions
	Folie 18: End Conditions
	Folie 19: End Conditions
	Folie 20: B-Spline Interpolation
	Folie 21: Interpolating B-Spline
	Folie 22: B-Spline Interpolation
	Folie 23: JAVA-Applet
	Folie 24: B-Spline Interpolation

