

Overview

- B-Spline Basis Functions
- B-Spline Curves
- deBoor Algorithm
- End Conditions
- Interpolation

B-Spline Curves

- Disadvantages of Bézier curves:
- Global support of the basis functions
- Insertion of new control points comes along with degree elevation
- $\boldsymbol{C}^{\boldsymbol{C}}$-continuity between individual segments of a Bézier curve
\Rightarrow B-Spline bases help to overcome these problems
(Local support, continuity control, arbitrary knot vector)

JAVA-Applet

- Disadvantages of Bézier curves:
- Global support of the basis functions
- Insertion of new control points comes along with degree elevation
- \boldsymbol{C}^{\prime}-continuity between individual segments of a Bézier curve
$\Rightarrow B$-Spline bases help to overcome these problems
(Local support, continuity control, arbitrary knot vector)

B-Spline Bases of Different Degree

B-Spline Functions

- Definition:
- A B-Spline curve $\boldsymbol{s}(u)$ built from piecewise polynomial bases

$$
\boldsymbol{s}(u)=\sum_{i=0}^{k} \boldsymbol{d}_{i} N_{i}^{n}(u)
$$

- Coefficients $\boldsymbol{d}_{\boldsymbol{i}}$ of the B-Spline basis function are called de Boor points
- Bases are piecewise, recursively defined polynomials over a sequence of knots $u_{0}<u_{1}<u_{2}<\cdots$
- Defined by a knot vector $\boldsymbol{T}=\boldsymbol{u}=\left[u_{0}, \ldots, u_{k+n+1}\right]$

JAVA-Applet

- B-Spline bases:
- Different degrees
- Piecewise polynomial
- Local support
- uniform / non-uniform
- B-Splines-Bernstein polynomials

B-Spline Functions

- Properties:
- Partition of Unity:

$$
\sum_{i} N_{i}^{n}(u) \equiv 1
$$

- Positivity:

$$
N_{i}^{n}(u) \geq 0
$$

- Compact support: $\quad N_{i}^{n}(u)=0, \quad \forall u \notin\left[u_{i}, u_{i+n+1}\right]$
- Continuity: N_{i}^{n} is ($n-1$) times continuously differentiable

B-Spline Functions

- From the recurrence formula we obtain:

$$
\begin{aligned}
N_{i}^{1}(u) & = \begin{cases}\frac{u-u_{i}}{u_{i+1}-u_{i}}, & u \in\left[u_{i}, u_{i+1}\right] \\
\frac{u_{i+2}-u}{u_{i+2}-u_{i+1}}, & u \in\left[u_{i+1}, u_{i+2}\right]\end{cases} \\
N_{i}^{2}(u) & =\frac{u-u_{i}}{u_{i+2}-u_{i}} N_{i}^{1}(u)+\frac{u_{i+3}-u}{u_{i+3}-u_{i+1}} N_{i+1}^{1}(u) \\
& = \begin{cases}\frac{u-u_{i}}{u_{i+2}-u_{i}} \cdot \frac{u-u_{i}}{u_{i+1}-u_{i}} \\
\frac{u-u_{i}}{u_{i+2}-u_{i}} \cdot \frac{u_{i+2}-u}{u_{i+2}-u_{i+1}}+\frac{u_{i+3}-u}{u_{i+3}-u_{i+1}} \cdot \frac{u-u_{i+1}}{u_{i+2}-u_{i+1}}, & i \in\left[u_{i}, u_{i+1}\right] \\
\frac{u_{i+3}-u}{u_{i+3}-u_{i+1}} \cdot \frac{u_{i+3}-u}{u_{i+3}-u_{i+2}} & i \in\left[u_{i+2}, u_{i+3}\right]\end{cases}
\end{aligned}
$$

B-Spline Functions

- Recurrence relation:

$$
N_{i}^{n}(u)=\left(u-u_{i}\right) \frac{N_{i}^{n-1}(u)}{u_{i+n}-u_{i}}+\left(u_{i+n+1}-u\right) \frac{N_{i+1}^{n-1}(u)}{u_{i+n+1}-u_{i+1}}
$$

where:

$$
N_{i}^{0}(u)= \begin{cases}1, & u \in\left[u_{i}, u_{i+1}\right] \\ 0, & \text { else }\end{cases}
$$

The student might verify that B-Spline bases of degree n have support over $n+1$ Intervals of the knot vector

B-Spline Functions

So-called B-Spline filters are widely use in signal processing. Cardinal B-Splines over uniform knot sequences can be computed using the convolution operator as:

$$
\begin{aligned}
& N_{i}^{n}=N^{n-1} * N^{0}=\int_{0}^{x} N^{n-1}(t) N^{0}(x-t) d t \\
& N^{0}: \text { box }- \text { function }
\end{aligned}
$$

B-Spline Functions

- uniform B-Splines vs. non-uniform B-Splines

Continuity: Curve is globally C^{n-1} continuous.

- Exception:
multiple knots of order p with $u_{j}=\ldots=u_{j+p-1}$ lead to C^{n-p} continuous curves $(p<n+1)$
- Properties:
\Rightarrow variation diminishing property: More restrictive, for $n+1$ adjacent deBoor points
\Rightarrow convex hull property: More restrictive, for $n+1$ adjacent deBoor points

deBoor Algorithm

- Generalization of deCasteljau's method.
- Evaluation of a point on the curve at $u=t$.
- For a given $\mathrm{t} \in\left[u_{l}, u_{l+1}\right]$ all $N_{i}^{n}(u)$ are vanishing in spite of $i \in\{1-n, \ldots, \bigcap$.
This is a direct consequence of the local support of the bases.
- Point $\boldsymbol{s}(t)$ computed by successive linear interpolation
- Control point in k-th step

$$
\begin{aligned}
& \boldsymbol{d}_{i}^{k}=\left(1-a_{i}^{k}\right) \boldsymbol{d}_{i-1}^{k-1}+a_{i}^{k} \boldsymbol{d}_{i}^{k-1} \quad a_{i}^{k}=\frac{t-u_{i}}{u_{i+n+1-k}-u_{i}} \\
& \text { where } \quad \boldsymbol{d}_{i}^{0}=\boldsymbol{d}_{\boldsymbol{i}}, \quad \boldsymbol{d}_{\boldsymbol{n}}^{n}=\boldsymbol{s}(t)
\end{aligned}
$$

deBoor Algorithm

 (non-uniform)

JAVA-Applet

- deBoor algorithm:
- Successive linear interpolation
- Local support (Principles of locality)
- Bernstein polynomials
- Different end conditions

deBoor Algorithm

- Special case: First and last knot have multiplicity of $n+1$:

$$
0=u_{0}=u_{1}=\ldots=u_{n}<u_{n+1}=u_{n+2}=\ldots=u_{2 n+1}
$$

- with $u_{n+k}=1$ for $k \in[1, \ldots, n+1]$ we obtain:

$$
\boldsymbol{d}_{i}^{k}(u)=u \boldsymbol{d}_{i}^{k-1}(u)+(1-u) \boldsymbol{d}_{i+1}^{k-1}(u)
$$

(de Casteljau-Algorithm)

End Conditions

- Open curves:
- Design of endpoint interpolating B-Spline curves of degree n by knot vectors of type:

$$
\boldsymbol{u}=\boldsymbol{T}=\left(u_{0}=u_{1}=\ldots=u_{n-1}=u_{n}, u_{k}=u_{k+1}=\ldots=u_{k+n}\right)
$$

- Sequencing of knots influences the sweep of the curve
- Example: Cubic bases with $\boldsymbol{T}_{1}=(0,0,0,0,1,2,3,4,5,5,5,5)$

$$
\text { and } \boldsymbol{T}_{2}=(0,0,0,0,1,2.75,3.25,4,5,5,5,5)
$$

In both cases we get different bases at the boundaries

$$
N_{o}^{3}(0)=1=N_{o}^{3}(5)
$$

End Conditions

- Closed curves:
- Periodic repetition of the deBoor points and knots by

$$
d_{0}=d_{k+1} \quad u_{k+1}=u_{0}
$$

- The knot vector:

$$
\boldsymbol{T}=\left(u_{0}, u_{1}, \ldots, u_{k}, u_{k+1}=u_{0}, u_{k+2}=u_{2}, \ldots, u_{k+n}=u_{n-1}\right)
$$

End Conditions

- Parametric B-Spline curve:

$$
s(u)=\sum_{i=0}^{k} d_{i} N_{i}^{n}(u), \quad u \in\left[u_{0}, u_{n-1}\right]
$$

- Support of the bases:

$$
\begin{aligned}
& N_{0}^{n} \Rightarrow\left[u_{0}, \ldots u_{n+1}\right] \\
& N_{1}^{n} \Rightarrow\left[u_{1}, \ldots u_{n+2}\right] \\
& N_{2}^{n} \Rightarrow\left[u_{2}, \ldots, u_{n+3}\right] \\
& \ldots \\
& N_{k-2}^{n} \Rightarrow\left[u_{k-2}, u_{k-1}, u_{k}, u_{0}, \ldots u_{n-2}\right] \\
& N_{k-1}^{n} \Rightarrow\left[u_{k-1}, u_{k}, u_{0}, \ldots u_{n-1}\right] \\
& N_{k}^{n} \Rightarrow\left[u_{k}, u_{0}, \ldots u_{n}\right]
\end{aligned}
$$

B-Spline Interpolation

- Interpolate a given set of $k+1$ points \boldsymbol{p}_{j}
- Let $u_{j} \in\left[u_{0, . .}, u_{k+n+1}\right]$ a straightforward insertion yields

- However, the curve needs $n+1$ active bases in the interval of definition
- System is under-determined
- We need more control points $\boldsymbol{d}_{0}, \ldots, \boldsymbol{d}_{\boldsymbol{k}+\boldsymbol{n}-1}$

$$
\boldsymbol{s}\left(u_{j}\right)=\sum_{i=0}^{k+n-1} \boldsymbol{d}_{i} N_{i}^{n}\left(u_{j}\right)=\boldsymbol{p}_{\boldsymbol{j}}
$$

Interpolating B-Spline

Endpoints $p_{3}=d_{0}$ and $p_{8}=d_{7}$ as well as tangents
($q_{a}=d_{1}$ and $r_{b}=d_{6}$) have to be preset

B-Spline Interpolation

- For endpoint interpolating splines we need $n+k$ equations, whereof $k-1$ define the interior intervals and $n+1$ the boundaries
- Interpolation costs two equations:

$$
\boldsymbol{d}_{0}=\boldsymbol{p}_{0} \quad, \quad \boldsymbol{d}_{k+n-1}=\boldsymbol{p}_{k}
$$

- Others can be used to specify tangency, curvature etc.

$$
t_{0}=d_{1}-d_{0} \quad, \quad t_{k}=d_{k+n-2}-d_{k+n-1}
$$

JAVA-Applet

- Illustration of the interpolation problem

B-Spline Interpolation

- For a cubic:

