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Overview

• Tensor Product Approach

• Surface Construction

• Bézier Patch

• 2D de Casteljau

• B-Spline Patch

• Derivatives



The Tensor Product Approach
• Let                       be a 2D or 3D spatial curve given by

the bases Fi

• Coefficients ci are functions of a second parameter v

• ci -curves as linear combinations of Gj

•  so-called tensor product surface x(u,v):
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“Tensor Product”
The name “tensor product” is derived from the tensor 

product or outer product operator by which the 2D 

separable basis functions can be constructed.

We assume the function space V1 to be spanned by Bi(u).

A 2D basis Bi(u)•Bj(v) can be constructed by

V2 = V1 ⊗V1 with

Bi,j
m(u,v) = Bi

m(u) • Bj
m(v) i,j = 0,..,m



Tensor Product Surface
(Trace of a Curve in Space)



Bézier Patches
• Given a Bézier-curve bm(u) of degree m with:

• Control points bi as Bézier-curves of degree n:

• Point bm,n(u,v) on the surface with:
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Bézier Patches

• Control net bi,j

• Isoparameter curves of degree m (n) for

= const ( = const)
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Tensor Product Bézier Patch



Tensor Product Bézier Patch



Example of a Bicubic Bézier Patch
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Bézier Patches

• Bézier surfaces have similar properties as Bézier

curves:

– Affine invariance

– Convex hull property

– Variation diminishing property

– Boundary curves: The patch boundary curves are 

Bézier curves



2D deCasteljau
• Points on the surface by recursive interpolation
• Given: Array of control points bij, 0  i, j  n and

a parameter pair (u,v)
• Intermediate values in level r of the algorithm computed by

• represents a point on the surface (u,v)
of the Bézier patch bn,n

 bilinear interpolation
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deCasteljau Algorithm



Bézier Patches

If the number of control points differs in u- and v-

direction we compute k = min(m,n) 2D 

interpolation steps and proceed with the 1D 

version of the algorithm



Bézier Patches

• Example of the deCasteljau Algorithm for

(u,v) = (0.5, 0.5):

– r = 1:
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Bézier Patches
– r = 2:

– r = 3:
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OpenGL-Surfaces
• Using glMap2f() and glEvalMesh2f()

void myinit(void) {

glClearColor (0.0, 0.0, 0.0, 1.0);

glEnable (GL_DEPTH_TEST);

glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]);

glEnable(GL_MAP2_VERTEX_3);

glEnable(GL_AUTO_NORMAL);

glEnable(GL_NORMALIZE);

glMapGrid2f(100, 0.0, 1.0, 100, 0.0, 1.0);

initlights(); /* for lighted version only */

}



OpenGL-Surfaces

void display(void) {

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glRotatef(85.0, 1.0, 1.0, 1.0);

glEvalMesh2(GL_FILL, 0, 100, 0, 100);

glPopMatrix();

glFlush();

}



Warping as a 2D Parametric Function

• Given a matrix of vector valued landmark points:

• Solve interpolation problem

• Sample parametric function at (ui , vj)
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Warping as a 2D Parametric Function



Warping as a 2D Parametric Function



Warping as a 2D Parametric Function



Matrix Form

• Generalization of notions for curves

• Matrix {bij} defines the control net of the surface

• Conversion into monomials
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Matrix Form
• Matrices M and N by

• Example: Bicubics
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Derivatives

• Patch derivative computation is important for

– Continuity between piecewise patches

– Surface normal

• Similar to curve with partial derivatives in u- and v-

direction

• We distinguish between
vu
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Derivatives – Computation

• Exploit separability

• Use equation for curves

• Generalized forward difference operator r,s:

r-times in u- and s- times in v-direction
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Derivatives – Computation

• In v-direction

• In general
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Derivatives – Computation
• Mixed terms of partial derivatives:

• Vector valued surface in R3

• Cross-boundary derivatives are fundamental

• rth order derivatives at the patch boundaries
depend r+1 rows (columns) of control points
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Normal Vector

• Defined as cross product of partial derivatives in u and v

• Orthogonal to tangential plane at (u,v)
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Tangential Plane and Surface Normal



B-Spline Patches
• Fundamental importance in surface modelling

• Most advanced modelling and animation systems are based on 
NURBS

• Tensor product surface given by 1D bases             and           for 
the knots ui and vk

• B-Spline surface x(u,v) defined by

dij: de Boor Points
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Biquadratic B-Spline Basis



B-Spline Patches
• Isoparameter lines (v = const.) form B-Spline curves with deBoor

points of type

• Changing a de Boor point di,j influences surface in interval u  [ui

,ui+n+1], v  [vj ,vj+m+1]

• Conversely, patch u  [ui ,ui+1], v  [vj ,vj+1] given by de Boor points 

di-n,j-m ,…, di,j

• Bézier points by multiple knot insertion
• 2D deBoor algorithm
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Rational B-Spline Patches (NURBS)

• In analogy to rational curves

• Weights wij as an additional degree of freedom
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NURB Surfaces
• Rational Surfaces are not tensor product surfaces, since 

bases are non-separable of type
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Recall that we compute all algorithms in 4D and project

back to 3D using homogeneous coordinates

Tensor product algorithms operate in u and in v direction 

separately



B-Spline Surface
(degree m = 3, non-periodic knot vector)



B-Spline Surface
(degree m = 2, knot vector periodic in u-direction)



B-Spline Surface
(degree m = 2, knot vector periodic in u and v)



NURB Surface
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NURB Surface
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NURB Surface
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NURB Surface
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OpenGL NURBS

GLUnurbsObj *theNurb;

.

.

.

theNurb = gluNewNurbsRenderer();

.

gluNurbsProperty(theNurb,

GLU_SAMPLING_TOLERANCE, 25.0);

gluNurbsProperty(theNurb, GLU_DISPLAY_MODE,

GLU_FILL);



OpenGL NURBS

gluBeginSurface(theNurb);

gluNurbsSurface(theNurb, 

S_NUMKNOTS, sknots,

T_NUMKNOTS, tknots,

4 * T_NUMPOINTS,

4,

&ctlpoints[0][0][0], 

S_ORDER, T_ORDER,

GL_MAP2_VERTEX_4);

gluEndSurface(theNurb);



The Tensor Product Approach
• 2D basis functions can be separated along the parameters u and v

• Examples:
– Monomials:

– Lagrange-Polynomials:

ui and vj define parameter lines – and           Lagrange-Polynomials

• Surface defined by (n+1)(m+1) points pi,j
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16 Point Lagrange Patch (interpolating)
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