
Tensor Product Surfaces
Prof. Dr. Markus Gross

Overview

• Tensor Product Approach

• Surface Construction

• Bézier Patch

• 2D de Casteljau

• B-Spline Patch

• Derivatives

The Tensor Product Approach
• Let be a 2D or 3D spatial curve given by

the bases Fi

• Coefficients ci are functions of a second parameter v

• ci -curves as linear combinations of Gj

•  so-called tensor product surface x(u,v):


=

=
m

i
i

uFu
0

)()(
i

cx


=

=
v

j
j

vGv
0

)()(
ji,i

c 

 
= =

==
i

m

i

n

j
jii

vGuFuFvu,v
0 0

)()()()()(
ji,i

cx 

“Tensor Product”
The name “tensor product” is derived from the tensor

product or outer product operator by which the 2D

separable basis functions can be constructed.

We assume the function space V1 to be spanned by Bi(u).

A 2D basis Bi(u)•Bj(v) can be constructed by

V2 = V1 ⊗V1 with

Bi,j
m(u,v) = Bi

m(u) • Bj
m(v) i,j = 0,..,m

Tensor Product Surface
(Trace of a Curve in Space)

Bézier Patches
• Given a Bézier-curve bm(u) of degree m with:

• Control points bi as Bézier-curves of degree n:

• Point bm,n(u,v) on the surface with:


=

=
m

i

m

i
uBu

0

)()(
i

m
bb


=

==
n

j

n

j
vBv

0

)()(
ji,ii

bbb


= =

=
m

i

n

j

n

j

m

i
vBuBu,v

0 0

)()()(
ji,

m,n
bb

Bézier Patches

• Control net bi,j

• Isoparameter curves of degree m (n) for

= const (= const)


=

==
n

j

n

j
m,..,i,v̂Bv̂

0

0)()(
ji,i

bb

These curves follow straight lines in parameter space

(u,v) and are parallel to the axes u and v

General curves, such as along the patch diagonals are

of degree n+m

v̂ û

Tensor Product Bézier Patch

Tensor Product Bézier Patch

Example of a Bicubic Bézier Patch

b00

b03

b13

b33

b23

b21
b10

b11

b20

Bézier Patches

• Bézier surfaces have similar properties as Bézier

curves:

– Affine invariance

– Convex hull property

– Variation diminishing property

– Boundary curves: The patch boundary curves are

Bézier curves

2D deCasteljau
• Points on the surface by recursive interpolation
• Given: Array of control points bij, 0  i, j  n and

a parameter pair (u,v)
• Intermediate values in level r of the algorithm computed by

• represents a point on the surface (u,v)
of the Bézier patch bn,n

 bilinear interpolation

 

ji,ji,

,rr

j,i

,rr

j,i

,rr

ji,

,rr

ji,r,r

ji,

bb

bb

bb
b

=

−==








 −












−= −−

++

−−

+

−−

+

−−

00

11

11

11

1

11

1

11

01

1
1

, with

rn,..,ji,;n..,,r

v

v
uu

n,n

,
b

00

deCasteljau Algorithm

Bézier Patches

If the number of control points differs in u- and v-

direction we compute k = min(m,n) 2D

interpolation steps and proceed with the 1D

version of the algorithm

Bézier Patches

• Example of the deCasteljau Algorithm for

(u,v) = (0.5, 0.5):

– r = 1:

















































































































































4

4

4

4

4

2

0

4

0

2

2

4

0

2

2

0

2

0

0

0

4

0

0

2

0

0

0

Bézier Patches
– r = 2:

– r = 3:

































































52

3

3

1

3

1

50

1

3

0

1

1

.

.

















1

2

2

OpenGL-Surfaces
• Using glMap2f() and glEvalMesh2f()

void myinit(void) {

glClearColor (0.0, 0.0, 0.0, 1.0);

glEnable (GL_DEPTH_TEST);

glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]);

glEnable(GL_MAP2_VERTEX_3);

glEnable(GL_AUTO_NORMAL);

glEnable(GL_NORMALIZE);

glMapGrid2f(100, 0.0, 1.0, 100, 0.0, 1.0);

initlights(); /* for lighted version only */

}

OpenGL-Surfaces

void display(void) {

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glRotatef(85.0, 1.0, 1.0, 1.0);

glEvalMesh2(GL_FILL, 0, 100, 0, 100);

glPopMatrix();

glFlush();

}

Warping as a 2D Parametric Function

• Given a matrix of vector valued landmark points:

• Solve interpolation problem

• Sample parametric function at (ui , vj)


= =

=
m

i

n

j

n

j

m

i

nm, vBuBu,vI
0 0

)()()(
ji,

b














=

)(

)(

jiij

jiij

,vuy

,vux

ij
m

 
































=

)(

)(

)()()(

jm

j

iniji

vB

vB

uBuB,vu 








0

0

000

0

nmn

m

bb

bb

m

Warping as a 2D Parametric Function

Warping as a 2D Parametric Function

Warping as a 2D Parametric Function

Matrix Form

• Generalization of notions for curves

• Matrix {bij} defines the control net of the surface

• Conversion into monomials

 
































=

)(

)(

)()()(

vB

vB

uBuBu,v
n

n

n

m

m

m 








0

0

000

0

mnm

n

m,n

bb

bb

b

 
































=
n

m

v

v

uuu,v 









0

0

000

0
N

bb

bb

Mb

mnm

n

Tm,n)(

Matrix Form
• Matrices M and N by

• Example: Bicubics



















−=



















−=

−

−

i

j

j

n
n

i

j

j

m
m

ij

ij

ij

ij

)(

)(

1

1





















−

−

−

==

1000

3300

3630

1331

NM

Derivatives

• Patch derivative computation is important for

– Continuity between piecewise patches

– Surface normal

• Similar to curve with partial derivatives in u- and v-

direction

• We distinguish between
vu

,
v

,
u 









 2

Derivatives – Computation

• Exploit separability

• Use equation for curves

• Generalized forward difference operator r,s:

r-times in u- and s- times in v-direction

)()()(vBuB
u

u,v
u

n

j

n

j

m

i

m

i 
= =













=





0 0
ji,

m,n
bb


=

−

=

−=


 n

j

m

i

n

j

m

i

, vBuBmu,v
u 0

1

0

101)()()(
ji,

m,n
bb 

ji,j,iji,
bbb −=

+1

01 ,
ji,ji,ji,

bbb −=
+1

10 ,

Derivatives – Computation

• In v-direction

• In general


=

−

=

−=


 m

i

n

j

m

i

n

j

, uBvBnu,v
v 0

1

0

110)()()(
ji,

m,n
bb 

ji,ji,ji,

ji,jiji,

ji,

m,n

ji,

m,n

bbb

bbb

bb

bb

10

1

100

01

1

010

0 0

0

0 0

0

−

+

−

−

+

−

=

−

=

−

=

−

=

−

−=

−=

−
=





−
=









s,s,s,

,r

,

,r,r

m

i

sn

j

m

i

sn

j

s,

s

s

n

j

rm

i

n

j

rm

i

,r

r

r

uBvB
s)!(n

n!
u,v

v

vBuB
r)!(m

m!
u,v

u









)()()(

)()()(

Derivatives – Computation
• Mixed terms of partial derivatives:

• Vector valued surface in R3

• Cross-boundary derivatives are fundamental

• rth order derivatives at the patch boundaries
depend r+1 rows (columns) of control points


−

=

−

=

−−
+

−−
=



 rm

i

sn

j

sn

j

rm

i

r,s

sr

sr

vBuB
s)!(nr)!(m

n!m!
u,v

vu 0 0

)()()(
ji,

m,n
bb 


== −

=






 n

j

n

j,

,r

r

r

u

vB
r)!(m

m!
,v

uu 0
0

0

0

0)()(
j

m,n
bb 

Normal Vector

• Defined as cross product of partial derivatives in u and v

• Orthogonal to tangential plane at (u,v)

)()(

)()(

)(

u,v
v

u,v
u

u,v
v

u,v
uu,v

m,nm,n

m,nm,n

bb

bb

n


















=

Tangential Plane and Surface Normal

B-Spline Patches
• Fundamental importance in surface modelling

• Most advanced modelling and animation systems are based on
NURBS

• Tensor product surface given by 1D bases and for
the knots ui and vk

• B-Spline surface x(u,v) defined by

dij: de Boor Points

)(vMm

j
)(uNn

i


= =

=
k

i

h

j

m

i

n

j
uNvMu,v

0 0

)()()(
ji,

dx

Biquadratic B-Spline Basis

B-Spline Patches
• Isoparameter lines (v = const.) form B-Spline curves with deBoor

points of type

• Changing a de Boor point di,j influences surface in interval u  [ui

,ui+n+1], v  [vj ,vj+m+1]

• Conversely, patch u  [ui ,ui+1], v  [vj ,vj+1] given by de Boor points

di-n,j-m ,…, di,j

• Bézier points by multiple knot insertion
• 2D deBoor algorithm


=

=
h

j

vv
0

)()(m

jji,i
Mdd

Rational B-Spline Patches (NURBS)

• In analogy to rational curves

• Weights wij as an additional degree of freedom





= =

= =
=

k

i

h

j

n

j

m

iji,

k

i

h

j

n

j

m

iji,

vNuNw

vNuNw

u,v

0 0

0 0

)()(

)()(

)(

ji,
d

s

NURB Surfaces
• Rational Surfaces are not tensor product surfaces, since

bases are non-separable of type


= =

=
k

i

h

j

n

j

m

iji,

n

j

m

iji,

ji,

vNuNw

vNuNw
u,vF

0 0

)()(

)()(
)(

Recall that we compute all algorithms in 4D and project

back to 3D using homogeneous coordinates

Tensor product algorithms operate in u and in v direction

separately

B-Spline Surface
(degree m = 3, non-periodic knot vector)

B-Spline Surface
(degree m = 2, knot vector periodic in u-direction)

B-Spline Surface
(degree m = 2, knot vector periodic in u and v)

NURB Surface























=

11111

11111

11111

11111

11111

W

NURB Surface























=

11111

11111

111011

11111

11111

W

NURB Surface























=

11111

13030301

1301301

13030301

11111

W

NURB Surface























=

11111

11010101

1101101

11010101

11111

...

..

...

W

OpenGL NURBS

GLUnurbsObj *theNurb;

.

.

.

theNurb = gluNewNurbsRenderer();

.

gluNurbsProperty(theNurb,

GLU_SAMPLING_TOLERANCE, 25.0);

gluNurbsProperty(theNurb, GLU_DISPLAY_MODE,

GLU_FILL);

OpenGL NURBS

gluBeginSurface(theNurb);

gluNurbsSurface(theNurb,

S_NUMKNOTS, sknots,

T_NUMKNOTS, tknots,

4 * T_NUMPOINTS,

4,

&ctlpoints[0][0][0],

S_ORDER, T_ORDER,

GL_MAP2_VERTEX_4);

gluEndSurface(theNurb);

The Tensor Product Approach
• 2D basis functions can be separated along the parameters u and v

• Examples:
– Monomials:

– Lagrange-Polynomials:

ui and vj define parameter lines – and Lagrange-Polynomials

• Surface defined by (n+1)(m+1) points pi,j


= =

=
m

i

n

j

ji vuu,v
0 0

ji,
x )(


= =

=
m

i

n

j

n

j

m

i
vJuLu,v

0 0

)()()(
ji,

px

)(uLm

i
)(vLn

j

16 Point Lagrange Patch (interpolating)

	Folie 1: Tensor Product Surfaces
	Folie 2: Overview
	Folie 3: The Tensor Product Approach
	Folie 4: “Tensor Product”
	Folie 5: Tensor Product Surface (Trace of a Curve in Space)
	Folie 6: Bézier Patches
	Folie 7: Bézier Patches
	Folie 8: Tensor Product Bézier Patch
	Folie 9: Tensor Product Bézier Patch
	Folie 10: Example of a Bicubic Bézier Patch
	Folie 11: Bézier Patches
	Folie 12: 2D deCasteljau
	Folie 13: deCasteljau Algorithm
	Folie 14: Bézier Patches
	Folie 15: Bézier Patches
	Folie 16: Bézier Patches
	Folie 17: OpenGL-Surfaces
	Folie 18: OpenGL-Surfaces
	Folie 19: Warping as a 2D Parametric Function
	Folie 20: Warping as a 2D Parametric Function
	Folie 21: Warping as a 2D Parametric Function
	Folie 22: Warping as a 2D Parametric Function
	Folie 23: Matrix Form
	Folie 24: Matrix Form
	Folie 25: Derivatives
	Folie 26: Derivatives – Computation
	Folie 27: Derivatives – Computation
	Folie 28: Derivatives – Computation
	Folie 29: Normal Vector
	Folie 30: Tangential Plane and Surface Normal
	Folie 31: B-Spline Patches
	Folie 32: Biquadratic B-Spline Basis
	Folie 33: B-Spline Patches
	Folie 34: Rational B-Spline Patches (NURBS)
	Folie 35: NURB Surfaces
	Folie 36: B-Spline Surface (degree m = 3, non-periodic knot vector)
	Folie 37: B-Spline Surface (degree m = 2, knot vector periodic in u-direction)
	Folie 38: B-Spline Surface (degree m = 2, knot vector periodic in u and v)
	Folie 39: NURB Surface
	Folie 40: NURB Surface
	Folie 41: NURB Surface
	Folie 42: NURB Surface
	Folie 43: OpenGL NURBS
	Folie 44: OpenGL NURBS
	Folie 45: The Tensor Product Approach
	Folie 46: 16 Point Lagrange Patch (interpolating)

