Ray Tracing Prof. Dr. Markus Gross

 Send rays into the scene to determine the color of a pixel

• Albrecht Dürer (1525)

• Whitted (1979)

Recursive ray tracing (reflection & refraction)

Today – high-quality renderings

Ray-traced images

Ray-traced images

Ray-traced images

Basic pipeline

Ray Generation

• Pinhole camera

Ray Generation

- Extension Anti-aliasing
 - Multiple rays per pixel supersampling

Ray-Surface Intersections

Ray equation

Ray-Surface Intersections

• Sphere

Hzürich

E

- Equation $\|\mathbf{x} - \mathbf{c}\|^2 - r^2 = 0$ point of center radius interest $\mathbf{r}(t)$
- Insert ray equation $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$
- Solve for t $\|\mathbf{o} + t\mathbf{d} \mathbf{c}\|^2 r^2 = 0 \quad \mathbf{o} \quad \mathbf{d}$

Ray-Surface Intersections

- Triangle
 - Barycentric coordinates $\mathbf{x} = s_1\mathbf{p}_1 + s_2\mathbf{p}_2 + s_3\mathbf{p}_3$
 - Intersect with triangle's plane

$$(\mathbf{o} + t\mathbf{d} - \mathbf{p_1}) \cdot \mathbf{n} = 0$$
 $t = -\frac{(\mathbf{o} - \mathbf{p_1})}{\mathbf{d} \cdot \mathbf{n}}$

- where $\mathbf{n} = (\mathbf{p_2} \mathbf{p_1}) \times (\mathbf{p_3} \mathbf{p_1})$
- Compute s_i

- Test
$$s_1 + s_2 + s_3 = 1$$
 $0 \le s_i \le 1$

<u>cgl</u>

 \mathbf{p}_2

 S_1

 $\cdot \mathbf{n}$

ETH zürich

- Physically exact shading too costly
- Simplifying assumptions
 - Surface reflectance: diffuse, specular, ambient, transparency terms
 - Shadows: shadow rays to determine if a hit point is in shadow or not

• Simplifying assumptions – surface reflectance

Simplifying assumptions – shadows

Simplifying assumptions – shadows

Diffuse shading

With shadows

• Extensions – Refraction

• Extensions – Refraction

• Extensions – Multiple lights

- Extensions Area lights for soft shadows
 - Multiple shadow rays to sample area light source

Extensions – Area lights for soft shadows

- Extensions Motion blur
 - Sample objects and intersect in time

• Extensions – Motion blur

- Complex scenes
 - Cost = O(#rays x #objects)
 - 50K trees each with 1M polygons = 50B polygons
 - \rightarrow 594 years!

- Solution: fewer intersections
 - Uniform grids
 - Space partitioning trees
- 11 minutes 300,000,000x speedup

- Uniform grids Preprocessing
 - Compute bounding box
 - Set grid resolution
 - Rasterize objects
 - Store references to objects

- Uniform grids Traversal
 - Incrementally rasterize ray
 - Stop when intersection happens

- Uniform grids
- Advantages
 - Fast to build
 - Easy to code
- Disadvantages

ETH zürich

– Non-adaptive to scene geometry

• Uniform grids

Brute force: 6321 intersection tests per ray Uniform grid: 44.86 intersection tests per ray

Space partitioning trees

