
G
R

A
PH

IS
C

H
E

D
A

TE
N

VE
R

A
R

B
EI

TU
N

G

Eidgenössische
Technische Hochschule

Zürich

Prof. Dr. Markus Gross
Computer Graphics Laboratory
Institut für Visual Computing
Departement Informatik

For non-commercial research and
educational use within ETH only.

Not for reproduction, distribution or
commercial use.

The script is under construction.

Contents

List of Figures vii

List of Tables xiii

1 Introduction 1
1.1 Definitions of Graphical Data Processing . 1
1.2 Areas of graphic data processing . 2
1.3 Fundamentals of realistic, computer-generated images 3
1.4 Rendering Pipeline . 5
1.5 Visualization Pipeline . 5

2 Light and Colors 9
2.1 Basics of sensory physiology and physics . 9
2.2 Units of measurement for light . 10

2.2.1 Light flow . 10
2.2.2 Light intensity . 10
2.2.3 Illuminance . 11
2.2.4 Luminance . 12

2.3 Definition and Physiology of Color . 14
2.3.1 definition . 14
2.3.2 Physiology . 15

2.4 The norm valence system of the CIE . 15
2.4.1 CIE standard valence curves . 15
2.4.2 The CIE Chart . 20
2.4.3 Important color spaces for practice . 21
2.4.4 Monitor calibration . 23

i

Contents

2.5 color spaces . 23
2.5.1 RGB color space . 23
2.5.2 CMY color space . 23
2.5.3 HSV color space . 24
2.5.4 YIQ color space . 26
2.5.5 Perception-oriented color spaces . 27

3 Geometric transformations 31
3.1 Introduction . 31
3.2 2D transformations . 32

3.2.1 Translation . 32
3.2.2 Scaling . 32
3.2.3 Rotation . 32
3.2.4 Homogeneous coordinates . 33
3.2.5 Shear . 36
3.2.6 Scaling and rotation in homogeneous coordinates 36
3.2.7 Concatenation of 2D transformations 37

3.3 Coordinate systems . 39
3.3.1 World, object and camera coordinates 39
3.3.2 Windows and Viewports . 39
3.3.3 Calculation bases . 40

3.4 3D transformations in homogeneous coordinates 42
3.4.1 Right and left systems . 42
3.4.2 Translation . 44
3.4.3 Scaling . 44
3.4.4 Rotation . 44
3.4.5 Inversion . 45
3.4.6 Shear . 45
3.4.7 Transformation of normal vectors . 46
3.4.8 Composite 3D Transforms . 46
3.4.9 Example application flight simulation 49

3.5 3D rotations and translations with quaternions 51
3.5.1 Definition and Properties . 51
3.5.2 Quaternions of length one . 52
3.5.3 3D rotations using unit quaternions 53
3.5.4 Translations and concatenations . 54

4 Projections for 3D representation 57
4.1 Fundamentals of planar projections . 57

4.1.1 Parallel Projection . 58
4.1.2 Perspective projections . 61
4.1.3 Coordinate systems and viewports . 62
4.1.4 Clipping Planes . 63

4.2 Mathematics of projection types . 65
4.2.1 Perspective projection . 66
4.2.2 parallel projection . 68

ii

Contents

4.2.3 General formulation . 68
4.2.4 summary . 70

5 Clipping 73
5.1 Introduction . 73
5.2 Line clipping in 2D . 73

5.2.1 brute force method . 74
5.2.2 Cohn-Sutherland Algorithm . 75
5.2.3 Parametric line clipping (Liang-Barsky / Cyrus-Beck) 79

5.3 Polygon clipping in 2D . 84
5.3.1 Identification of convex polygons . 85
5.3.2 Sutherland-Hodgeman algorithm . 86
5.3.3 Liang-Barsky polygon clipping . 89

5.4 Line clipping in 3D . 92
5.4.1 Cohn-Sutherland Algorithm . 92
5.4.2 Parametric Clipping . 94

5.5 Clipping in homogeneous coordinates . 95

6 Scan Conversion 97
6.1 Lines . 97

6.1.1 First incremental algorithm (Digital differential analyzer) 97
6.1.2 Bresenham’s algorithm . 99

6.2 Circles(Bresenham) . 102
6.2.1 Derivation from implied circle equation 102
6.2.2 Elimination of real arithmetic . 104
6.2.3 Improvement by second-order partial differences 105

6.3 Ellipses . 107
6.4 Scan conversion of polygons . 110

6.4.1 A three-step algorithm . 112
6.4.2 Horizontal edges . 112
6.4.3 Problems with long thin polygons (slivers) 113
6.4.4 Edge coherence . 113
6.4.5 The Active Edge Table data structure (AET) 115

7 Hidden Line and Hidden Surface Algorithms 117
7.1 Hidden Line Algorithms . 117

7.1.1 Back Face Culling . 117
7.1.2 Appel’s algorithm . 118

7.2 Hidden Surface Algorithms . 120
7.2.1 Z buffering . 120
7.2.2 Depth sorting (Newell-Newell-Sancha) 122
7.2.3 BSP trees . 126
7.2.4 Warnock’s Algorithm . 128
7.2.5 Weiler-Atherton Algorithm . 129

iii

Contents

8 Lighting, Shading and Texturing 137
8.1 Lighting . 137

8.1.1 Ambient Light . 137
8.1.2 Diffuse Reflection . 138
8.1.3 Attenuation . 138
8.1.4 Colors . 139
8.1.5 Depth Cueing . 140
8.1.6 Specular Reflection (Directional Reflection) 140
8.1.7 Phong’s lighting model . 141
8.1.8 Modeling light sources . 144

8.2 Shading . 145
8.2.1 Constant shading . 145
8.2.2 Gouraud shading . 145
8.2.3 Phong shading . 147

8.3 Transparency and refraction . 149
8.3.1 Derivation of the refraction vector . 151
8.3.2 Neglecting refraction (α blending) . 152

8.4 cast shadow . 153
8.4.1 Scan line shadow calculation . 154
8.4.2 Shadow Volumes . 154

8.5 Texture Mapping . 157
8.5.1 Mapping of brightness and color functions 157
8.5.2 Reflection Mapping . 160
8.5.3 Aliasing Effects in Texture Mapping 160
8.5.4 Bump mapping . 165

9 The Open Graphics Library (OpenGL) 169
9.1 Introduction . 169

9.1.1 Graphics systems and standards . 169
9.1.2 The OpenGL . 170
9.1.3 OpenGL organizational principles . 172

9.2 The OpenGL Pipeline . 173
9.2.1 Graphic primitives . 173
9.2.2 Transformations . 173
9.2.3 Lighting Models . 176
9.2.4 Texture Mapping . 177
9.2.5 Clipping and projection . 179
9.2.6 Raster scan conversion and antialiasing 180
9.2.7 Pixels and Bitmaps . 181
9.2.8 The framebuffer . 182
9.2.9 Variable . 183

9.3 Integration into window systems . 184

10 Recursive Raytracing 189
10.1 Global Illumination . 189
10.2 Abstract description by Kajiya’s rendering equation 190

iv

Contents

10.3 Recursive Raytracing . 191
10.3.1 Schematization of the algorithm by ray tree 193
10.3.2 Recursive definition of the local lighting model 193
10.3.3 Typical ray tracing algorithm . 194
10.3.4 Adaptive tree depth control . 196
10.3.5 Ray box intersection calculation . 196

11 Antialiasing 203
11.1 Definitions . 203

11.1.1 Folding . 203
11.1.2 Fourier Transform . 204
11.1.3 Elementary Relations . 206

11.2 Sampling . 206
11.2.1 Sampling of One-Dimensional Functions 206
11.2.2 Sampling of Two-dimensional Functions 210

11.3 Antialiasing Methods . 212
11.3.1 Band Limitation through Filtering . 212
11.3.2 Filtering of Textures . 215
11.3.3 Raytracing Supersampling Methods 216
11.3.4 Adaptive Supersampling . 217
11.3.5 Stochastic Supersampling . 217

v

Contents

vi

List of Figures

1.1 Cyclic action unit of graphic data processing and image processing 2
1.2 Main research areas of graphic data processing 3
1.3 The rendering pipeline . 6
1.4 The visualization pipeline . 7

2.1 Light is the visible part of the electromagnetic spectrum 10
2.2 Spectral brightness sensitivity of the human eye a) Photopic domain V (λ) b)

Scotopic region V ′(λ) . 11
2.3 Typical relative spectral power density distribution of a light source 12
2.4 Illustration of the geometric arrangement of transmitter and receiver 12
2.5 Goniometric diagram: luminous intensity distribution curve for a physical light

source (far field of a surface element). 13
2.6 Relative spectral energy distribution of sunlight in different atmospheric layers 14
2.7 Spectral discrimination properties . 16
2.8 Relative spectral sensitivity of the human eye 17
2.9 Neural coding of color perception . 17
2.10 Schematic test setup for determining the standard valence curves of the CIE 1931 18
2.11 Spectral evaluation functions r, g, b for the primary valences R,G,B 18
2.12 Normalized spectral weighting functions x, y, z for the standard primaries X, Y, Z 19
2.13 CIE chart with some characteristic color locations 21
2.14 Nomenclature for areas of similar color types in the CIE chart 22
2.15 color coordinates in the CIE chart . 22
2.16 RGB color space . 24
2.17 CMY color space . 24
2.18 HSV color space . 25

vii

List of Figures

2.19 Distinction thresholds as ellipses in the McAdams experiment for different color
locations (scaled 10 times) . 28

2.20 Nonlinear distortions of the La*b* and Lu*v* color spaces 29

3.1 interpretation of the two-dimensional homogeneous coordinates in 3D 34
3.2 World and object coordinates . 39
3.3 Relationship between world and screen coordinates, windows and viewports . . 40
3.4 Non-uniform scaling and multiple viewports for the same window 40
3.5 mapping of a window into a viewport . 41
3.6 Clipping at window and viewport . 42
3.7 Right-handed coordinate system . 43
3.8 Left-handed coordinate system . 43
3.9 Object and world coordinates for flight simulation 50
3.10 Arrangement of characteristic vectors for 3D rotation 53
3.11 concatenation of translation and rotation . 55
3.12 Movement sequence of a camera coordinate system. 55

4.1 Parallel and perspective projection . 57
4.2 Overview of the variants of the planar projection 58
4.3 Construction of Three Orthographic Projections 59
4.4 Construction of an Isometric Projection of a Unit Cube 59
4.5 Isometric Projection of the Unit Vectors with the Projection Direction (1, 1, 1) . 59
4.6 Construction of an Oblique Projection . 60
4.7 Cavalier Projection of the Unit Cube . 60
4.8 Cabinet Projection of the Unit Cube . 61
4.9 Illustration of the Angles in Cavalier and Cabinet Projection 61
4.10 Perspective projection of the unit cube with a vanishing point 62
4.11 Perspective 2-point projection of the unit cube (in this drawing, the projection

plane corresponds to the drawing plane. 63
4.12 Example of a 3 point projection (projection plane intersects all 3 coordinate

axes) compared to the 2 point projection of the same object (only the x and y
axes are intersected . 64

4.13 Plane of projection in the legal system . 64
4.14 Right-hand reference coordinate system given by the u,v, and n-axis (camera or

viewing coordinate system) . 64
4.15 Viewing volumes for parallel and perspective projection 65
4.16 Plane of projection in the left system . 65
4.17 Clipping planes with perspective projection 65
4.18 Clipping planes in oblique parallel projection 66
4.19 Perspective projection . 66
4.20 Alternative perspective projection into the (z=0)-plane 68
4.21 Illustration for the derivation of a general formulation for the projection 69
4.22 Transition from world coordinates to camera coordinates 71

5.1 Line clipping in 2D . 74
5.2 Polygon clipping in 2D . 74
5.3 4-bit codes of the different regions . 75

viii

List of Figures

5.4 Illustration of the Cohen-Sutherland clipping 77
5.5 Dot product for three points, one outside, one inside and one on the clipping

rectangle . 80
5.6 Lines diagonal to the clipping rectangle . 81
5.7 difference between convex and concave polygon 85
5.8 Sign of the cross products for testing convex polygons 85
5.9 Polygon clipping at a rectangular clipping window 86
5.10 Relationship when clipping edges on lines . 87
5.11 visibility test . 87
5.12 Flowchart of the Sutherland-Hodgeman algorithm 88
5.13 Pre-sectioning of the plane . 89
5.14 Different positions of the starting point in the sections 90
5.15 necessity of a point in window vertex . 91
5.16 The two possibilities of the intersection of a line with the window 91
5.17 Clipping volumes in 3D . 93

6.1 scan-converted line . 98
6.2 Incremental calculation of (xi, yi) . 98
6.3 Points M and Q, as well as pixels N and NE in the Bresenham algorithm . . . 100
6.4 increments in the Bresenham algorithm related to the respective quadrant . . . 102
6.5 Eight symmetrical points on the circle . 102
6.6 Pixel grid with the points M,E and SE . 103
6.7 Example of creating a quadrant using symmetry 105
6.8 Standard ellipse at origin . 108
6.9 Two regions of an ellipse defined by the 45◦ tangent 108
6.10 polygon and scan line . 111
6.11 Span of a polygon: extrema are shown in black, inner points are grey: a) Ex-

trema calculated with midpoint algorithm (Bresenheam) b) extrema within the
polygon . 111

6.12 Horizontal edges in a polygon . 113
6.13 Scan conversion of Silvers . 114
6.14 ET for the example polygon from Fig. 6.10 115
6.15 AET for scan lines 9 and 10 from Fig. 6.10 116

7.1 Illustration of back face culling: grey: Back-facing polygons black: Front-
facing polygons . 118

7.2 Quantitative invisibility of lines . 119
7.3 Contour line runs in front of the polygon edge 119
7.4 Example of how the Z-buffer works . 121
7.5 Interpolation of z values by incrementing . 122
7.6 Different situations for the spatial arrangement of polygons 122
7.7 Test 4 is fulfilled . 123
7.8 Test 4 is not fulfilled, test 5 is fulfilled . 123
7.9 Example of deciding tests 4 and 5 . 125
7.10 Clustering of a polygon scene and associated BSP tree 126
7.11 Examples for building BSP trees . 132

ix

List of Figures

7.12 BSP tree traversal and resulting scan conversion order for two different projec-
tions of the same scene . 133

7.13 Illustration of case 4 for deciding whether a further subdivision is necessary for
quadtree methods . 133

7.14 Subdivision into square cells . 134
7.15 Subdivision around the polygon vertices marked with circles 135
7.16 Examples for the Weiler-Atherton algorithm (a) original scene (b) Polygons

clipped to A (c) inside list of A clipped to C (d) visible parts within A (e)
Polygons clipped to B (f) All visible parts of the scene 136

8.1 Diffuse reflection . 138
8.2 Diffuse reflection: Ratio between incident and reflected light intensity depend-

ing on the size of the radiating comparison to the reflecting surface dA/(dA/cos θ)139
8.3 Sigmoids for calculating the attenuation . 140
8.4 Vectors and angles in specular reflection: vector to light source L, surface nor-

mal N, reflection vector R, vector to viewer V 141
8.5 Calculation of the reflection vector . 141
8.6 Characteristics of the cosnα function for different n 142
8.7 Propagation map for different n . 143
8.8 Warn’s lighting model and spotlight . 144
8.9 Goniometric diagrams of Warn’s light sources and a point light source 145
8.10 vertex and surface normals . 146
8.11 Intensity interpolation along polygon edges and scan lines 146
8.12 Illuminated sphere approximated by different numbers of polygons as wire-

frame and as solid . 147
8.13 Interpolation of the normal vector in Phong shading 148
8.14 Interpolation of the vertex normals . 148
8.15 Flat, Gouraud and Phong Shading in comparison 149
8.16 Refraction in the water glass . 149
8.17 Snell’s law of refraction . 150
8.18 Refractive index as a function of wavelength (left) and some typical indices

measured at a fixed wavelength (right). 150
8.19 Arrangement for the derivation of the vector T 151
8.20 Absorption factor in α blending . 153
8.21 Scan-Line Shadow Algorithm . 155
8.22 Shadow volume defined by the light source and the shadow-casting polygon . . 156
8.23 Calculating the shadow cast with the help of shadow volumes 156
8.24 Texture mapping from pixel to surface into texture map 157
8.25 Mapping a line texture to a spherical octant 158
8.26 Coordinate relationships in texture mapping to a cylinder 160
8.27 Calculation of texture coordinates in reflection mapping 161
8.28 Illustration of Reflection Mapping . 162
8.29 Texture mapping by object space subdivision 162
8.30 projection of the pixel in image space onto the texel in texture space 165
8.31 Core points for calculating partial derivatives with finite differences 166

x

List of Figures

8.32 Texture mapping methods in comparison (from left to right: modulation of col-
ors - or brightness values, bump mapping, displacement mapping and reflection
mapping) . 167

9.1 Block diagram of data flow in OpenGL . 172
9.2 Types of geometric primitives in OpenGL . 174
9.3 Relationship between coordinates and attributes of a corner point 175
9.4 sequence of vertex transformations to represent primitives 176
9.5 a) Monochrome triangle b) Gouraud-shaded triangle c) More complex shaded

object . 177
9.6 Utah teapots with different surface properties 178
9.7 mipmap representation of a texture . 179
9.8 a) Typical scene from many textured polygons (driving simulation) b) Contour-

ing through texture mapping c) reflection mapping 179
9.9 Viewing Volume of Perspective Projection . 180
9.10 Determining the percentage coverage of a pixel 181
9.11 Bitplanes of the framebuffer . 182
9.12 GLX client, X server and OpenGL renderer 185
9.13 Output of the sample program above . 188

10.1 Principle of ray casting . 190
10.2 Influence of reflection and refraction on lighting 190
10.3 REflection and transmission on the way eye-light source 192
10.4 Path of a line of sight in an example scene . 193
10.5 Resulting binary ray tree for the example scene in Figure 10.4 194
10.6 Flow chart for recursive ray tracing (for the meaning of the nomenclature see

the following page) . 198
10.7 Traversal of the ray tree in the algorithm from Figure 10.6 199
10.8 Calculation of the intensity at an intersection 200
10.9 Ray box intersection calculation for slabs perpendicular to the main axes 201

11.1 (a) 2D block function (b) Corresponding Fourier spectrum (c) Spectrum shown
as intensity distribution (logarithmically scaled) 205

11.2 Illustration of sampling and aliasing (from the complex-valued Fourier trans-
form, the magnitude is plotted) . 208

11.3 Illustration of the sampling of time-limited signals 209
11.4 Illustration of the Discrete Fourier Transform 210
11.5 2D momentum combs . 211
11.6 Representation of a sampled, band-limited 2D function in frequency space . . . 212
11.7 Design criteria for interpolation filters . 213
11.8 Different 1D filters and their Fourier transforms 214
11.9 Same shapes on screen correspond to different shapes in texture space 216
11.10Local variant filter: Circular region in screen space (left) are mapped to el-

liptical region in texture space. These regions differ in size, eccentricity and
orientation. Dots mark pixel centers. 216

11.11Example of super sampling: Four corner rays and one center ray are traced for
each pixel . 217

xi

List of Figures

11.12Example of adaptive super sampling . 218
11.13Jittering: Each sampling point is "jiggled" by two uncorrelated random values

in the x and y direction . 219
11.14Poisson samples (a) versus jittering (b) . 219
11.15FFRNS for lk0β = 0.5 and lk0β = 0.95 . 221
11.16FFRNS for uniformly distributed jitter . 222
11.17FFRNS for α = 1.0 and α = 0.5 . 222

xii

List of Tables

2.1 Table of some typical illuminance levels or luminance levels 13

5.1 Table of calculations required for parametric clipping 82
5.2 Table of calculations needed for parametric 3D clipping 94

8.1 Mapping of the lines from Fig. 8.26 (a) to the spherical octants in Fig. 8.26 (b) . 159

xiii

List of Tables

xiv

1

Introduction

1.1 Definitions of Graphical Data Processing

Computer graphics concerns the pictorial synthesis of real or imaginary objects
from their computer-based models, whereas the related field of image processing
(also called picture processing) treats the converse process: the analysis of scenes,
or the reconstruction of models of 2D or 3D objects from their pictures.

James D Foley

Graphic data processing deals with the creation and management of computer-aided, attributed,
geometric models and the generation of images from these models.

• It thus creates access to the visual interpretation of complex relations and semantics and
thus increases the gain in knowledge in many areas of science and technology.

• It is interdisciplinary and integrative.

• It is complementary to image processing and supplements it to form a cyclic effect unit.

In contrast, the definition of visualization, also often called scientific visualization, is far more
general. This term was coined by an expert committee of the National Science Foundation
established in 1987 as follows:

“Visualization is a method of computing. It transforms the symbolic into the geo-
metric, enabling researchers to observe their simulations and computations. Visu-
alization offers a method for seeing the unseen. It enriches the process of scientific
discovery and fosters profound and unexpected insights. In many fields it is already
revolutionizing the way scientists do science.

1 Introduction

Figure 1.1: Cyclic action unit of graphic data processing and image processing

Visualization embraces both image understanding and image synthesis. That is,
visualization is a tool both for interpreting image data fed into a computer, and
for generating images from complex multidimensional data sets. It studies those
mechanisms in humans and computers which allow them in concert to perceive and
communicate visual information. Visualization unifies the largely independent but
convergent fields of:

• Computer Graphics

• Image processing

• Computer vision

• Computer-aided design

• Signal processing

• User interface studies"

NSF Report on Visualization in Scientific Computing, 1987

1.2 Areas of graphic data processing

Graphic data processing, to which the following lecture provides an introduction, includes a
wide variety of work areas from modeling and CAD to graphic systems and iconic image pro-
cessing. This is illustrated in the following picture, whereby only a part of the subject areas is
covered within the lecture cycle.

2

1.3 Fundamentals of realistic, computer-generated images

Figure 1.2: Main research areas of graphic data processing

1.3 Fundamentals of realistic, computer-generated
images

A sequence of processing steps is required for computer-aided image generation. Starting from
an initial object modeling, the scene is transformed, shading, lighting and texturing are calcu-
lated, the hidden edges are eliminated, invisible areas are clipped, the scene is projected into the
image plane and finally mapped to individual discrete image elements, so-called pixels. This
sequence of processing steps is also called graphics pipeline or rendering pipeline, although the
order of the individual steps can vary depending on the method used.

1. Item descriptions

3

1 Introduction

• geometry (in the form of primitives, hierarchies)

• material (texture, reflection properties, color, physical properties)

• Topological properties

2. Transformation and projection methods

• 3D transformations (affine)

• perspective / parallel projection

• camera model (lens as pinhole)

3. Lighting and Shading

• Description of the light sources (color, spectral characteristics)

• reflection model (diffuse, specular)

• Transparency and shadows

• multiple reflections

• texturing

• Cast shadow

• volume effects

4. Hidden lines and areas

• Hidden Line

• Hidden Surface

• backface culling

5. clipping

• 2D clipping for display

• 3D-Clipping at the viewing pyramid

6. scan conversion

• Conversion of the projected geometric primitives into discrete pixel values

7. Display

• Mono/Stereo

• Head mounted display

• holograms

4

1.4 Rendering Pipeline

1.4 Rendering Pipeline

The Rendering Pipeline describes the path from a geometric, attributed model to the (image)
output. This is shown as an example in the following image. To achieve interactivity, the
pipeline must be reversible (interaction pipeline), i.e. the path from the pixel to the geometry
and its attributes must be clearly known.

1.5 Visualization Pipeline

The often quoted visualization pipeline describes the process of mapping thematic data (of any
format) via attributed geometry into images. The rendering pipeline is a part of the visualization
pipeline.

5

1 Introduction

Figure 1.3: The rendering pipeline

6

1.5 Visualization Pipeline

Figure 1.4: The visualization pipeline

7

1 Introduction

8

2

Light and Colors

2.1 Basics of sensory physiology and physics

Light is the visible part of the electromagnetic spectrum. The following relationship applies to
electromagnetic radiation: The energy E of a quantum of light is given by:

E =
hc

λ
h:Plank’s constant c:speed of light λ:wavelength

Thus the energy of the radiation is directly proportional to the frequency. However, as shown in
Fig. 2.1, the physiological light stimulus only works from about 380 - 780nm and thus in a small
part of the entire spectrum. It therefore does not correlate directly with the electromagnetic
energy.

The physiological brightness sensitivity V (λ) describes the sensitivity of the human eye and
varies over the visible spectrum. The graph below shows the relative spectral sensitivity of the
human eye as a function of wavelength. A distinction is made between curves for the photopic
range (day vision, cones, light-adapted eye) and for the Scotopic range (night vision, rods,
dark-adapted eye).

The aim of lighting technology is to define physical masses that take the above distribution into
account. For this purpose, the following sizes were introduced.

2 Light and Colors

Figure 2.1: Light is the visible part of the electromagnetic spectrum

2.2 Units of measurement for light

2.2.1 Light flow

The luminous flux F describes the power emitted by a light source with the spectral power
density distribution P(λ), evaluated with the spectral brightness sensitivity V(λ).

F = const ·
∫ 780nm

380nm

P (λ)V (λ) dλ const: 683 lm/W (2.1)

The unit of luminous flux is the lumen [lm].

2.2.2 Light intensity

Of particular interest is the distribution of the luminous flux over the hemisphere defined with
the light source as the center. The following arrangement is given for this, with the light source
and light receiver each being shown as surface elements.

The luminous intensity I is the luminous flux emitted into a solid angle element dω1. A hemi-
sphere is placed around the radiator (Fig. 2.4). For every point on the hemisphere there is a

10

2.2 Units of measurement for light

Figure 2.2: Spectral brightness sensitivity of the human eye
a) Photopic domain V (λ)
b) Scotopic region V ′(λ)

certain luminous intensity. Sections through the resulting luminous intensity distribution body
are represented by so-called goniometric diagrams (Fig. 2.5).

I =
dF

dω1

(2.2)

The unit of luminous intensity is the candela [cd].

2.2.3 Illuminance

To characterize the light flow, which acts on a surface depending on the current geometry of the
scene, another variable is required.
The part of the luminous flux that arrives on a surface element dA2 is called illuminance B.

11

2 Light and Colors

Figure 2.3: Typical relative spectral power density distribution of a light source

Figure 2.4: Illustration of the geometric arrangement of transmitter and receiver

B =
dF

dA2

(2.3)

The unit of illuminance is lux [lx].

2.2.4 Luminance

Due to the geometric relationships between the surface normal direction and the direction of
emission, represented by the angle ϵ1, an "effective" differential luminous intensity results,
which describes the emission of each surface element dA1 of the radiator through the solid
angle element dω1. This is the luminance Y:

12

2.2 Units of measurement for light

Figure 2.5: Goniometric diagram: luminous intensity distribution curve for a physical light source (far
field of a surface element).

Table 2.1: Table of some typical illuminance levels or luminance levels

situation Ea [lux] surface type Y [cd m2]

clear sky in summer 15× 104 grass 2900

overcast sky 16× 103 grass 300

textile inspection 1500 light gray cloth 140

office work 500 white paper 120

heavy engineering 300 steel 20

good street lighting 10 concrete road surface 1.0

moonlight 0.5 asphalt road surface 0.001

Y =
d2F

dA1 · cosϵ1 · dω1

(2.4)

The unit of illuminance is candela/m2 [cd/m2].

Luminance is one of the most well-known units for quantifying light

The following table gives some values for illuminance and luminance that can occur in typical
situations.

13

2 Light and Colors

2.3 Definition and Physiology of Color

2.3.1 definition

The concept of color is very intuitive and it is generally difficult to find an accurate definition
of color. A variant is given below:

“Color is that aspect of visual perception by which an observer may distinguish
differences between two structure-free fields of view of the same spatial and tempo-
ral properties, such as may be caused by differences in the spectral composition of
the radiant energy concerned in the observed."

In technical applications, the color is often determined by a color temperature. This temperature
(in K) generally corresponds to the temperature that a black Planckian radiator would have to
have in order to glow with the corresponding color. The black body according to Max Planck is

Figure 2.6: Relative spectral energy distribution of sunlight in different atmospheric layers

a body that converts all incident radiation into heat, regardless of wavelength and temperature,
or all heat energy supplied to it into radiation. The ideal black body does not exist; Bodies with
similar properties are called grey radiators (platinum, carbon, soot, tungsten). An example is
iron, which when heated initially glows deep red, then light yellow to blue-white. With the help
of Planck’s radiation formula one finds the spectral energy distribution of a blackbody at a given

14

2.4 The norm valence system of the CIE

temperature:

VλT =
c1

λ5(ec2/λT − 1)
(2.5)

c1 = 3.74 · 10−12 W/cm2

c2 = 14.32

λ : wavelength

T: absolute temperature in Kelvin

For example, the sun is a Planckian radiator at 6500 K.

2.3.2 Physiology

The color of a self-illuminating object is obviously determined by its spectral power density
distribution P (λ). A key goal of colorimetry is to define units of measure for color. However, it
must be noted that the spectral discrimination properties of the human visual system vary across
the visible spectrum, as shown in Fig. 2.7. From an anatomical and physiological point of view,
the following two aspects must be considered:

The eye initially has three different sensitivity functions and cone types in the near-sighted
(photopic) area, which are reminiscent of the well-known three-color systems from video tech-
nology. However, the neuronal coding in the ganglion cells is antagonistic in the sense of
opposite colors red-green and blue-yellow. This is illustrated in Fig. 2.9. The aim is therefore to
find a system of measurement for colors that takes into account the physical and physiological
conditions mentioned.

2.4 The norm valence system of the CIE

2.4.1 CIE standard valence curves

In 1931 and 1964, the Commission Internationale de l’Eclairage (CIE) determined the so-called
norm valence system through experiments.

Mixed colors were generated from three primaries λ1 = 435.8nm, λ2 = 546.1nm and λ3 =
700.0nm and compared with pure spectral colors by test persons. The aim of the experiment
was to find out whether all spectral colors can be additively mixed using three different primary
colors. Fig. 2.10 shows the experimental arrangement. The following curves were obtained
as a result of the experiment: It can be seen that the function r(λ) assumes negative values
in a certain spectral range. There are therefore spectral colors that cannot be generated purely
additively from the three primary valences R, G, B. This is a result which is independent of the

15

2 Light and Colors

Figure 2.7: Spectral discrimination properties

16

2.4 The norm valence system of the CIE

Figure 2.8: Relative spectral sensitivity of the human eye

Figure 2.9: Neural coding of color perception

chosen wavelengths of the three primary colors. The width and location of the negative area
are affected, but not the fact that there is one. The three primaries are therefore replaced by the
CIE standard primaries or norm valences X, Y, Z, which allow purely additive generation of all
visible colors. The boundary conditions are:

• positivity of the curves

17

2 Light and Colors

Figure 2.10: Schematic test setup for determining the standard valence curves of the CIE 1931

Figure 2.11: Spectral evaluation functions r, g, b for the primary valences R,G,B

• Energy normalization by equal areas under the curves

• Equality of y(λ) and V (λ)

A normalization transformation results in the normalized spectral weighting functions x10(λ),
y10(λ), z10(λ) for the norm valences X, Y, Z:

x10(λ) = 0.341r(λ) + 0.189g(λ) + 0.388b(λ) (2.6)

y10(λ) = 0.139r(λ) + 0.837g(λ) + 0.073b(λ) z10(λ) = 0.000r(λ) + 0.040g(λ) + 2.062b(λ)

18

2.4 The norm valence system of the CIE

The resulting curves are shown in Fig. 2.12.

Figure 2.12: Normalized spectral weighting functions x, y, z for the standard primaries X, Y, Z

y2(λ) corresponds to the light perception V (λ) (sensitivity of the eye to light of the same inten-
sity of different wavelengths, see Fig. 2.12). Thus, each color of a self-luminous object can be
described by a triple (X, Y, Z) using its spectral power density distribution P (λ).

X =

∫ 780nm

380nm

P (λ)x(λ) dλ (2.7)

Y =

∫ 780nm

380nm

P (λ)y(λ) dλ

Z =

∫ 780nm

380nm

P (λ)z(λ) dλ

This allows a geometric interpretation in a three-dimensional Euclidean
coordinate system: The color locus is described as a vector f =
(X, Y, Z) and can be clearly identified. The addition of two colors

19

2 Light and Colors

f1 and f2 is simply a vector addition in space: f1+f2 = (X1+X2, Y1+
Y2, Z1 + Z2)

2.4.2 The CIE Chart

A two-dimensional chart is much better suited for the practical identification of colors, whereby
the chromaticity should be processed separately from the brightness (luminance). For this pur-
pose, a further normalization is carried out, which supplies the following variables:

x =
X

X + Y + Z
y =

Y

X + Y + Z
z = 1− xy (2.8)

This leads to the famous CIE chart, which is shown in Fig. 2.13 with some typical color lo-
cations. It plots x over y and allows each color to be uniquely characterized. The horse-shoe
delimiting the range of visible colors results from the projection of pure spectral colors into the
diagram.
Other characteristic features of the chart are:

• white point

• Isolines of saturation or whiteness of different colors

• Isolines of the chromaticity

• Planckian radiator and color temperature: This curve has a characteristic progression
from the deep red edge of the chart to the white point and into the weakly saturated blue.

• Dominant wavelength

• Purple Line

Areas of similarly perceived color tones are shown in Fig. 2.14.

Modern graphics monitors or video cameras often allow the color temperature
to be calibrated. The coordinates of the white point are associated
with the color temperature. The following temperatures and coordinates
are important:
A: light bulb, 0.448, 0.408
B: Sun in the afternoon, 0.349, 0.352
C: Overcast, 0.310, 0.316b
D65: Sun, 0.310, 0.316
Sony monitor: optionally 9300 K, 6500 K, 5000 K

It should be noted that the transformation into the CIE chart can
be viewed as a projection of the position vector f of a color value
into a plane X+Y+Z = 1. This plane is perpendicular to the space
diagonal in the three-dimensional Euclidean XYZ system.

20

2.4 The norm valence system of the CIE

Figure 2.13: CIE chart with some characteristic color locations

2.4.3 Important color spaces for practice

The color coordinates of screen phosphors are also defined by the CIE chart. These are uniform
for different television standards. The resulting areas (triangles) for various practical cases are
drawn in Fig. 2.15. Due to the vector representation of individual colors and the resulting mixing
laws as vector additions, it can be seen that every mixed color that is additively composed of
three primary valences must always lie within the inscribed triangle. Therefore, pure spectral
colors cannot always be generated by additive mixing (barycentric coordinates in the second
part of the script).
For typical phosphorus coordinates one finds, for example:

21

2 Light and Colors

Figure 2.14: Nomenclature for areas of similar color types in the CIE chart

Figure 2.15: color coordinates in the CIE chart

short-luminous phosphors
(short-presistance phosphors)

long-luminous phosphors
(long- persistence phosphors)

Red Green Blue Red Green Bluee

x 0.61 0.29 0.15 x 0.62 0.21 0.15

y 0.35 0.59 0.063 y 0.33 0.685 0.063

22

2.5 color spaces

Each point (X, Y, Z) can be transformed to (R, G, B) by inverting the matrix in equation (2.9):
X

Y

Z

 =

XR XG XB

YR YG YB

ZR ZG ZB

 ·

R

G

B

 (2.9)

2.4.4 Monitor calibration

A basic problem of photorealistic visualization is the reproduction of colors on a monitor. If
the spectral power density distributions of sources or surfaces are known from a calculation
method, they can first be transformed into the standard valence system.
If the phosphorus coordinates (xR, yR), (xG, yG)and(xB, yB) are given, X, Y, Z can be found
with the transformation

X

Y

Z

 =

xRCR xGCG xBCB

yRCR yGCG yBCB

(1− xR − yR) · CR (1− xG − yG) · CG (1− xB − yB) · CB

 ·

R

G

B

(2.10)

The unknowns CR, CG, CB result from a known white point (Xω, Zω, Zω) for R = G = B = 1
Xω

Yω

Zω

 =

xR xG xB

yR yG yB

(1− xR − yR) (1− xG − yG) (1− xB − yB)

 ·

CR

CG

CB

This allows screens that operate in an RGB system to be calibrated. Incidentally, the second line
of the above matrix corresponds to an equation for extracting gray levels from color images.

2.5 color spaces

2.5.1 RGB color space

The standard valence system of the CIE is a very technical framework, which is used in particu-
lar for exact reproductions in the paint, printing or textile industry. Since monitors usually work
with RGB, the additive RGB system is often used in graphic data processing. The coordinates
in the RGB color space are normalized to [0, 1].

2.5.2 CMY color space

Complementing this is the subtractive CMY system, which is frequently used in printing tech-
nology in particular, in which cyan, magenta and yellow represent the primary valences. The

23

2 Light and Colors

Figure 2.16: RGB color space

following applies:

C

M

Y

 =

1

1

1

−

R

G

B

 or

R

G

B

 =

1

1

1

−

C

M

Y

 (2.11)

In contrast to the RGB system, vectorial additions of individual colors result in a subtraction of
brightness.

Figure 2.17: CMY color space

2.5.3 HSV color space

Due to the difficulty of mixing colors in RGB, spaces have been defined that are based on
natural criteria such as Hue (hue), Saturation (saturation) and Value (brightness). The color
spaces described in this way can be found in various variants and are now part of almost all
presentation software or window systems. For example, you get a hexagonal color body as
shown in Fig. 2.18.

24

2.5 color spaces

Figure 2.18: HSV color space

All possible color types of the CIE chart are mapped to a 360◦ color circle. The color wheel is
divided into six fields, which represent the hues in the order of the CIE chart. For V = 0 the
values for S and H are irrelevant, for S = 0 H is irrelevant, while V determines the gray value.
Example: Conversion from RGB to HSV with R,G,B, S, V ∈ [0, 1] and H ∈ [0◦, 360◦]

/* determine value */
v = max(r, g, b);
/* determine saturation */
temp = min(r, g, b);
if (v == 0)

s = 0;
else

s = (v − temp)/v;
/* determine hue */
if (s == 0)

h = −1; /* undefined */
else {

cr = (v − r)/(v − temp);
cg = (v − g)/(v − temp);
cb = (v − b)/(v − temp);
if (r == v)

25

2 Light and Colors

h = cb − cg;
/* color between yellow and magenta */

if (g == v)
h = 2 + cr − cb;
/* color between cyan and yellow */

if (b == v)
h = 4 + cg − cr;
/* color between magenta and cyan */

h = 60*h; /* convert to degrees */
if (h < 0)

h += 360; /* prevent negative value */
}

Example: Conversion from HSV to HSV with R,G,B, S, V ∈ [0, 1] and H ∈ [0◦, 360◦]

if (s == 0) { /* achromatic case */
if (h == −1) /* undefined */

r = g = b = v;
else

error;
}
else { /* chromatic case */

if (h == 360) h = 0;
h /= 60;
i = floor(h); f = h − i;
m = v*(1 − s);
n = v*(1 − s*f);
k = v*(1 − s*(1 − f));
if (i == 0) r = v, g = k, b = m;
if (i == 1) r = n, g = v, b = m;
if (i == 2) r = m, g = v, b = k;
if (i == 3) r = m, g = n, b = v;
if (i == 4) r = k, g = m, b = v;
if (i == 5) r = v, g = m, b = n;

}

2.5.4 YIQ color space

The YIQ color space is the coding system of the NTSC color television standard. The to-
tal bandwidth of around 4.5 MHz is divided up in such a way that 2.4 MHz is available for
the luminance, 1.5 MHz for the in-phase component (orange-cyan, skin colors) and 0.6 MHz
(green-magenta) for the quadrature component. This is based on the psychophysical properties

26

2.5 color spaces

of the human visual system.
Y

I

Q

 =

0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311

 ·

R

G

B

 (2.12)

The phosphor has the following color coordinates in NTSC:

Red Green Blue

x 0.67 0.21 0.14

y 0.33 0.71 0.08

2.5.5 Perception-oriented color spaces

A fundamental problem in colorimetry is calculating the distance between two colors. It would
be obvious to calculate the Euclidean distance of the individual color locations in the stan-
dard valence system. However, an experiment by McAdams has shown that the differentiation
thresholds for individual colors are distributed ellipsoidally around the color coordinates in the
CIE chart. For this purpose, certain color locations (centers of the ellipses) had to be mixed by
two colors whose connecting line ran through the color to be mixed. The resulting lack of focus
when setting the mixing ratio led to the ellipsoidal differentiation thresholds shown in Fig. 2.19.
These in turn depend on the selected adaptation level and on the position in the chart.
Based on this knowledge, attempts have now been made to rectify the ellipses as much as pos-
sible into circles of the same radii. This has led to a whole series of different, so-called uniform
color spaces, which emerge from the norm valence system by means of heuristic non-linear
transformations. In those color spaces, metric distances correspond to perceived ones.

La*b* color space

L∗ = 25

[
100Y

Yω

]1/3
− 16 (2.13)

a∗ = 500

[(
X

Xω

)1/3

−
(
Y

Yω

)1/3
]

b∗ = 200

[(
Y

Yω

)1/3

−
(

Z

Zω

)1/3
]

(Xω, Yω, Zω): Coordinates of the white point

La*v* color space

27

2 Light and Colors

Figure 2.19: Distinction thresholds as ellipses in the McAdams experiment for different color locations
(scaled 10 times)

u =
4X

X + 15Y + 3Z
(2.14)

v =
9X

X + 15Y + 3Z

L∗ = 25 3

√
100Y

Yω

− 16

u∗ = 13L∗(u− uω)

v∗ = 13L∗(v − vω)

(Yω, uω, vω): coordinates of the white point

The last two color systems La*b* and Lu*v* cause non-linear distortions, which are shown in
Fig. 2.20 for the RGB and CMY color spaces.

28

2.5 color spaces

Figure 2.20: Nonlinear distortions of the La*b* and Lu*v* color spaces

29

2 Light and Colors

30

3

Geometric transformations

3.1 Introduction

Geometric primitives can be moved, rotated and scaled using 2D and 3D transformations. This
allows complex scenes composed of individual primitives to be generated and processed. The
mathematical basics of 2D and 3D transformations are discussed below. In particular, the con-
cept of homogeneous coordinates is of central importance.

First some definitions of terms:

1. A mapping A : x→ x′ is called linear if:

A(αx+ βy) = αA(x) + βA(y) (3.1)

If a vector x is multiplied by a matrix A, then A · x = x′ is a linear equation.

2. A mapping B : x→ x′ is called affine if it is of the form

x′ = A(x) + t = B(x) (3.2)

enough. That is, an affine mapping B can be decomposed into a linear mapping A and
into a translation by the vector t.

3 Geometric transformations

3.2 2D transformations

3.2.1 Translation

The displacement of a point P(x, y) by (dx, dy) into a point P (x’, y’) is described by:

 x′

y′

 =

 x

y

+

 dx

dy

⇒ P′ = P+T (3.3)

An object is translated by applying the above equation to all vertices.

Example: Translation by (3, -4):

3.2.2 Scaling

If the point P(x, y) is to be scaled by (sx, sy), the following applies: x′

y′

 =

 sx 0

0 sy

 ·
 x

y

⇒ P′ = S ·P (3.4)

Example: sx = 1/2, sy = 1/4,

3.2.3 Rotation

If a point P is to be rotated by the angle θ, the following applies:

x′ = x · cos θ − y · sin θ, y′ = x · sin θ + y · cos θ (3.5)

or

32

3.2 2D transformations

 x′

y′

 =

cos θ −sin θ

sin

theta cos

theta

 ·
 x

y

⇒ P′ = R ·P (3.6)

R is the 2D rotation matrix. Angles are defined mathematically positive. This equation is
derived using simple, trigonometric relationships.
Example: Rotation around π

4
The center of rotation is the origin of the coordinates

A rotation around any center requires the concatenation of several
individual transformations.

3.2.4 Homogeneous coordinates

The matrix notation of the three presented transformations are:

P ′ = T + P (3.7)
P ′ = S · P
P ′ = R · P

The translation is treated as an addition. As can easily be seen, the sum of the individual
mappings describes an affine mapping. Uniform treatment as multiplication is desirable. For

33

3 Geometric transformations

this purpose, the so-called homogeneous coordinates are introduced. They can be interpreted
simply as adding an extra dimension to the vectors.
Points P in 2D are provided with an additional coordinate W .

P = (x, y,W) (3.8)

Every point in 2D thus has an infinite number of homogeneous coordinates, depending on the
choice of W .

P = (1, 2) can be written as (1, 2, 1) or (3, 6, 3) or (-4, -8, -4) etc. (W ̸= 0).
General:

• P = (x,y,W) and P’ =
(

x
W
, y
W
, 1
)

are equal points in 2D

•
(

x
W
, y
W

)
are the Cartesian, two-dimensional coordinates of the point P in the homogeneous

coordinate system.

meaning: Since points obtained from one another by multiplication by a scalar t in homoge-
neous coordinates are equal, each point P(x, y) can be viewed as a straight line in the three-
dimensional space of homogeneous coordinates.

Figure 3.1: interpretation of the two-dimensional homogeneous coordinates in 3D

By homogenizing (division by W) the point P =
(

x
W
, y
W
, 1
)

results, which lies in the W = 1
plane. This allows using a 3x3 matrix T of the form

x′

y′

1

 =

1 0 tx

0 1 ty

0 0 1

 ·

x

y

1

⇒ P′ = T ·P (3.9)

to describe the translation

34

3.2 2D transformations

A point in homogeneous coordinates is therefore a straight line in
a higher-dimensional space. A division by the homogeneous coordinate
W corresponds to a projection into the plane W=1.

Example: Successive translation by T (tx1 , ty1 and T (tx2 , ty2 . The following applies:

P ′ = T (tx1 , ty1) · P
P ′′ = T (tx2 , ty2) · P ′

and thus:

P ′′ = T (tx2 , ty2) · (T (tx1 , ty1) · P) = ((tx2 , ty2) cdotT (tx1 , ty1)) · P

In matrix notation:
1 0 tx2

0 1 ty2

0 0 1

 ·

1 0 tx1

0 1 ty1

0 0 1

 =

1 0tx1 + tx2

0 1 ty1 + ty2

0 0 1

You can see the addition of the individual translation components, despite the matrix product
notation used.

If a concatenation of individual transformations also includes non-uniform scaling operations,
the result is an affine overall transformation that maintains the parallelism of lines, but not
lengths and angles.

Example: Successive rotation and non-uniform scaling (sx, sy) of a square:

35

3 Geometric transformations

3.2.5 Shear

Shearing can be done separately along the x-axis or the y-axis.
The shear matrix in x is defined as follows:

SHx =

1 a 0

0 1 0

0 0 1

Similarly, the shear matrix in y is given by:

SHy =

1 0a 0

b 1 0

0 0 1

Note that SHx × (x, y, 1)T = (x+ ay, y, 1)T and SHy × (x, y, 1)T = (x, y + bx, 1)T is.

Example: Shear in x and y direction:

The shear transformation is also linear.

3.2.6 Scaling and rotation in homogeneous coordinates

As with translation, the multiplication properties of scaling and rotation can be demonstrated.
The following relationships are given:

P ′ = S(sx1 , sy1) · P
P ′′ = S(sx2 , sy2) · P ′

Substituting the first equation into the second, we get

P ′′ = S(sx2 , sy2) · (S(sx1 , sy1) · P) = (S(sx2 , sy2) · S(sx1 , sy1)) · P

36

3.2 2D transformations

In matrix notation follows

sx2 0 0

0 sy2 0

0 0 1

 ·

sx1 0 0

0 sy1 0

0 0 1

 =

sx1 · sx2 0 0

0 sy1 · sy2 0

0 0 1

One recognizes the multiplication of the scaling parameters, where the scaling matrix is the
form

S(sx, sy) =

sx 0 0

0 sy 0

0 0 1

assumes For the rotation matrix one finds

S(sx, sy) =

sx 0 0

0 sy 0

0 0 1

 (3.10)

assumes For the rotation matrix one finds

R(θ) =

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.11)

A T ·R matrix of the form

r11 r12 tx

r21 r22 ty

0 0 1

 (3.12)

describes a rigid-body transformation (rigid body), because the shape of an object (length and
angle relationships) is preserved.

3.2.7 Concatenation of 2D transformations

To increase efficiency in computer-aided applications, it makes sense to chain elementary trans-
formations. Example: Rotation of an object around the point P1(x1, y1)

37

3 Geometric transformations

Successive execution of a translation from P1 to the origin, a rotation and subsequent back
transformation becomes in matrix form

T (x1, y1)×R(θ)× T (−x1,−y1) =

1 0 x1

0 1 y1

0 0 1

 ·

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 ·

1 0 −x1

0 1 −y1
0 0 1

=

cosθ −sinθ x1(1− cosθ) + y1sinθ

sinθ cosθ y1(1− cosθ)− x1areθ

0 0 1

Example: Concatenation of translation, rotation and scaling

In this case, the following operations must be applied to each vector in homogeneous coordi-
nates. The order of the operations must be observed.

T (x2, y2)×R(θ)× S(sx, sy)× T (−x1,−y1)

commutativity of two matrices M1 and M2 is only given if

38

3.3 Coordinate systems

M1 M2

Translation Translation

Scaling Scaling

Rotation Rotation

Scaling Rotation

Conclusion: Affine transformations (rotation, scaling, shearing, translation) can be concate-
nated as matrix products in homogeneous coordinates.

3.3 Coordinate systems

3.3.1 World, object and camera coordinates

• world coordinates: Coordinate system that describes the entire scene (world) in the units
of measurement specified by the application. These can be given in meters, light years,
but also seconds, amperes, etc. for visualization applications.

• Object coordinates: Coordinate system in which an individual object is described ac-
cording to its construction. To place objects in the world, the object coordinates must be
transformed into world coordinates.

• Camera coordinates: Coordinate system that has its origin in the projection center of the
camera. It is of fundamental importance for image generation.

Figure 3.2: World and object coordinates

3.3.2 Windows and Viewports

To map a scene in 2D, a window is generally first defined in world coordinates and this is then
mapped into the viewport, a coordinate system of the output device.

39

3 Geometric transformations

Figure 3.3: Relationship between world and screen coordinates, windows and viewports

Therefore, depending on the aspect ratio (ratio of height to width of the viewport), non-uniform
scaling is performed. The same windows can also be transformed into different viewports
(Fig. 3.4).

Figure 3.4: Non-uniform scaling and multiple viewports for the same window

3.3.3 Calculation bases

The transformation Window→ Viewport is a 3-step process consisting of a translation, subse-
quent scaling and translation again.

The overall matrix of this figure in homogeneous coordinates results in:

40

3.3 Coordinate systems

Figure 3.5: mapping of a window into a viewport

MWV = T (umin, vmin) · S(
umax − umin

xmax − xmin

,
vmax − vmin

ymax − x \ ymin

) · T (−xmin,−ymin)

=

1 0 umin

0 1 vmin

0 0 1

 ·

umax−umin

xmax−xmin
0 0

0 vmax−vmin

ymax−x\ymin
0

0 0 1

 ·

1 0 −xmin

0 1 −xmin

0 0 1

=

umax−umin

xmax−xmin
0 −xmin · umax−umin

xmax−xmin
+ umin

0 vmax−vmin

ymax−x\ymin
−ymin · vmax−vmin

ymax−x\ymin
+ vmin

0 0 1

 (3.13)

Each point (x, y, 1)T becomes on

P =

[
(x− xmin ·

umax − umin

xmax − xmin

+ umin(y − ymin) ·
vmax − vmin

ymax − x \ ymin

+ vmin 1

]

pictured. There is a need for so-called clipping methods, which test objects against the window
or viewport limits (see Chapter 5).

Note: In practical applications, vector matrix multiplications can use matrices of the form

M =

r11 r12 tx

r21 r22 ty

0 0 1

to

41

3 Geometric transformations

Figure 3.6: Clipping at window and viewport

x′ = x · r11 + y · r12 + tx

y′ = y · r12 + y · r22 + ty

be simplified. Four multiplications and four additions are sufficient.

3.4 3D transformations in homogeneous coordinates

Using homogeneous coordinates, each point (x, y, z) in 3D is described as a 4D vector of the
form (x, y, z,W). The homogenization is done by dividing by W :

(
x

W
,
y

W
,
z

W
, 1)

Each point in three-dimensional space can be described as a straight line through the origin in
4D. W = 1 defines an affine 3D subspace (hyperplane) of the 4D space.

3.4.1 Right and left systems

Right-handed coordinate system

The axes run in the positive direction along the right hand. When looking along one axis in
the direction of the origin, the other two axes merge into one another through rotation in the
mathematically positive sense.

42

3.4 3D transformations in homogeneous coordinates

Figure 3.7: Right-handed coordinate system

Axis of rotation positive direction

x y→ z

y z→ x

z x→ y

Left-handed coordinate system

A links system with the screen area in the xy plane is often used. This has the advantage that
larger, positive z values correspond to a larger distance from the viewer (camera coordinate
system).

Figure 3.8: Left-handed coordinate system

43

3 Geometric transformations

3.4.2 Translation

The translation in 3D can be realized by the following matrix:

T (tx, ty, tz) =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (3.14)

3.4.3 Scaling

The scaling in 3D results in:

S(sx, sy, sz) =

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 (3.15)

3.4.4 Rotation

The 2D rotation can be understood as a 3D rotation along the z-axis

Rz(θ) =

cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1

 (3.16)

To verify, rotate (1, 0, 0, 1)T by π
2
. The rotation matrices around the x-axis and around the y-axis

also result

Rx(θ) =

1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1

 (3.17)

44

3.4 3D transformations in homogeneous coordinates

Ry(θ) =

cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1

 (3.18)

A matrix M composed of affine single operations has the general form

M =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (3.19)

The rij describe rotation and scaling, the ti describe the translation.

3.4.5 Inversion

Due to the orthogonality of the rotations, a simple inversion is made possible by forming the
transpose. This corresponds to a negation of the rotation angle. The inversion of the scaling S
results from the reciprocation of sx, sy, sz, that of the translation T results from the negation of
tx, ty, tz.

3.4.6 Shear

In 3D one defines three shear matrices: xy-shear:

SHxy(shx, shy) =

1 0 shx 0

0 1 shy 0

0 0 1 0

0 0 0 1

 (3.20)

xz-shear:

SHxz(shx, shz) =

1 shx 0 0

0 1 0 0

0 shz 1 0

0 0 0 1

 (3.21)

45

3 Geometric transformations

yz shear:

SHyz(shy, shz) =

1 0 0 0

shy 1 0 0

shz 0 1 0

0 0 0 1

 (3.22)

3.4.7 Transformation of normal vectors

Let a plane over the normal n be implicitly defined by n · P = 0 in Hessian form.

Ax+By + Cz +D = 0 with n = (A,B,C,D)T and P = (x, y, z, 1)T

If all points P of the plane are to be transformed with M , the normal n′ of the transformed plane
results in:

n′ = (M−1)Tn

Note: In homogeneous coordinates, all transformations defined as a mapping of R4 → R4 are
linear, but affine in the R3 subspace.

3.4.8 Composite 3D Transforms

Example: The two line segments P1P2 and P1P2 are to be transformed as follows:

procedure:

1. Translation by P1 to the origin

2. y-rotation, so that P1P2 in yz-plane

3. x-rotation so that P1P2 on z-axis

4. z-rotation, so that P1P3 in yz-plane

46

3.4 3D transformations in homogeneous coordinates

Step 1: Translation by P1

T (−x1,−y1,−z1) =

1 0 0 −x1

0 1 0 −y1
0 0 1 −z1
0 0 0 1

Apply T to all three points

P ′1 = T (−x1,−y1,−z1)× P1 =

0

0

0

1

P ′2 = T (−x1,−y1,−z1)× P2 =

x2 − x1

y2 − y1

z2 − z1

1

P ′3 = T (−x1,−y1,−z1)× P3 =

x3 − x1

y3 − y1

z3 − z1

1

Step 2: Rotation around the y-axis

47

3 Geometric transformations

The rotation angle results in −(π/2− θ) and the values for Ry in

cos(θ − π/2) = sin(θ) =
z′2
D1

=
z2 − z1
D1

sin(θ − π/2) = −cos(θ) =
x′2
D1

=
x2 − x1

D1

whereby
D1 =

√
(z′2)

2 + (x′2)
2 =

√
(z2 − z1)2 + (x2 − x1)2

The new points P ′′2 and P ′′3 result in

P ′′2 = Ry(θ − π/2) · P ′2 = [0 y2 − y1 D1 1]
T

P ′′3 = Ry(θ − π/2) · P ′3

As expected, the x component of P ′′2 is 0.

Step 3: Rotation around the x-axis

With

D2 = ||P ′′1 P ′′2 || =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

the positive rotation angle ϕ results

cosϕ =
z′′2
D2

sinϕ =
y′′2
D2

The new point P ′′′2 becomes

P ′′′2 = Rx(ϕ) · P ′′2 = Rx(ϕ) ·Ry(ϕ− π/2) · P ′2
= Rx(ϕ) ·Ry(ϕ− π/2) · T · P2

= [0 0 ||P1P2|| 1]2

48

3.4 3D transformations in homogeneous coordinates

Step 4: rotation around the z-axis

The position of P ′′′3 results after step 3

P ′′′3 = [x′′′3 y′′′3 z′′′3 1]

= Rx(ϕ) ·Ry(ϕ− π/2) · T (−x1,−y1,−z1) · P3

The last positive rotation angle α can be calculated as follows:

cosα =
y′′′3
D3

sinα =
x′′′3
D3

D3 =
√

(x′′′3)
2 + (y′′′3)

2

The entire transformation matrix is obtained from:

Rz(α) ·Rx(ϕ) ·Ry(ϕ− π/2) · T (−x1,−y1,−z1) = R · T

3.4.9 Example application flight simulation

An object, which is available in object coordinates (xp, yp, zp), is to be transformed into a world
coordinate system (x, y, z), with the point P and the vector DOF (direction of flight) given
are.

Instead of performing the above steps successively, use can be made of the orthogonality of the
3x3 rotation matrices.

Is R through

R =

r1x r2x r3x

r1y r2y r3y

r1z r2z r3z

given, the column vectors rotate
(r1x, r1y, r1z) the x-axis,

49

3 Geometric transformations

Figure 3.9: Object and world coordinates for flight simulation

(r2x, r2y, r2z) the y-axis and
(r3x, r3y, r3z) the z-axis

separated from the original coordinate system; i.e. the vector (0, 0, 1)T (the z-axis) is transferred
in direction (r3x, r3y, r3z)

T . Likewise (1, 0, 0)T in (r1x, r1y, r1z)
T and (0, 1, 0)T in (r2x, r2y, r2z)

T .

If, as in the example, the three orthogonal directions are given as follows and DOF normalized,
the result is: (r3x, r3y, r3z)T = DOF
(r1x, r1y, r1z)

T = y ×DOF (in the left system: - yx DOF)
The vector xp is perpendicular to y and DOF , which means the system is not tilted.
(r2x, r2y, r2z)

T = DOF × (y ×DOF)
Vector yp is perpendicular to zp and xp.
This defines the complete 3x3 rotation matrix.

Example: Rotation around any axis If one wants to describe a rotation around an angle ϕ via
any axis U = (ux, uy, uz), the rotation matrix results in homogeneous coordinates

R =

u2
x + cosθ(1− u2

x) uxuy(1− cosθ)− uzsinθ uzux(1− cosθ) + uysinθ 0

uxuy(1− cosθ + uzsinθ u2
y + cosθ(1− u2

y) uyuz(1− cosθ) + uxsinθ 0

uzux(1− cosθ)− uysinθ uyuz(1− cosθ) + uxsinθ u2
z + cosθ(1− u2

z) 0

0 0 0 1

(3.23)

The derivation of the above matrix can be done as an exercise.

It should be noted that transformations can also be understood as a change of coordinate system.
The following applies to a right-left change:

50

3.5 3D rotations and translations with quaternions

MR←L = ML←R =

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 (3.24)

3.5 3D rotations and translations with quaternions

3.5.1 Definition and Properties

Another, quite elegant possibility for the definition of rotations and translations results with the
help of the so-called quaternions. A major advantage is the compact display compared to a
standard 4x4 matrix. A quaternion is a mathematical element defined as follows:

q = c+ xi+ yj + zk (3.25)

where c, x, y, z are real numbers and i, j, k are imaginary numbers. In general, the following
notation is also used:

q = c+ u (3.26)

c is the real part and u = xi+ yj + zk the pure quaternion. A quaternion can be understood as
a hypercomplex number and formally represents an analogous extension of a complex number
c = a+ bi to four dimensions. A number of operations can be defined on quaternions, resulting
in characteristic properties:

• Addition

q + q′ = (c+ c′) + (x+ x′)i+ (y + y′)j + (z + z′)k (3.27)

• Multiplication properties of the base [1, i, j, k]

i2 = j2 = k2 = −1
ij = k, ji = −k; jk = i, kj = −i; ki = j, ik = −j (3.28)

This results in the multiplication formula for two quaternions q and q′:

• multiplication

qq′ = (c+ u)(c′ + u′) (3.29)
= (cc′ − u · u′) + (u× u′ + ⟨cu′⟩+ ⟨c′u⟩) (3.30)

where the operations inner product, ⟨ ⟩ and cross product are defined as follows:

u · u′ = xx′ + yy′ + zz′ (3.31)
⟨cu⟩ = cxi+ cyj + czk (3.32)

u× u′ = (yz′ − zy′)i+ (zx′ − xz′)j + (xy′ − yx′)k (3.33)

51

3 Geometric transformations

From this, some essential properties can be derived, which allow the set of quaternions to be-
come a ring (Q,+, ·) with the defined mathematical operations.

• one-items
Addition (3.28) and multiplication (3.30) have the following unity elements:

0 = 0 + 0i+ 0j + 0k (3.34)
1 = 1 + 0i+ 0j + 0k (3.35)

(3.36)

• Inverse elements
The inverse element of the addition −q is given by

−q = −c− xi− yj − zk (3.37)

The inverse element of the multiplication q−1 results from

q−1 =
1

||q||2
q (3.38)

• Conjugate element q

q = c− u q = c+ u (3.39)

• absolute value formation of quaternions

qq = (c2 + u · u) + (u× u− ⟨cu⟩+ ⟨cu⟩) (3.40)
= c2 + x2 + y2 + z2 (3.41)

= ||q||2 (3.42)
(3.43)

Multiplication is not commutative.

3.5.2 Quaternions of length one

The quaternions that are important in connection with the transformations are the unit quater-
nions, i.e. those with absolute value 1. If you form the absolute value of a unit quaternion
||q||2 = c2+u·u = 1, this relationship can be calculated using a Unit vector N = [Nx, Ny, Nz]

T

in R3 and I = [i, j, k]T , with

u = snwithn = N · I
q = c+ u

be rewritten as follows:
c2 + s2 = 1 (3.44)

52

3.5 3D rotations and translations with quaternions

Thus each unit quaternion can be in the form

q = cos(Θ) + sin(Θ)n (3.45)

being represented. The inner product of two unit quaternions q4 and q′ results from the above
relationships by summing the corresponding angles (trigonometric addition theorem).

qq′ = cos(Θ + Φ) + sin(Θ + Φ)n (3.46)

3.5.3 3D rotations using unit quaternions

The geometric meaning of the unit quaternions to describe the rotation will be explained below.
For this purpose, the rotation of a point P to P ′ over an arbitrary axis N in 3D, as shown in
Fig. 3.10, is first considered Using the following relationships we can express the rotation in 3D

Figure 3.10: Arrangement of characteristic vectors for 3D rotation

in a conditional equation for P ′ depending on P and on N and Θ:

P ′ = cos(Θ)P + (1− cos(Θ))N(N × P) + sin(Θ)× P) (3.47)

Let U⊥V, V⊥N . The derivation can be done as an exercise. The corresponding rotation matrix
R(Θ, N) can now be derived from the above equation as follows:

R(Θ, N) = cos(Θ)I3 + (1− cos(Θ))NTN + sin(Θ)AN (3.48)

With

N = [N1N2N3], P = [P1P2P3], I3 =

1 0 0

0 1 0

0 0 1

 , AN =

0 N3 −N2

−N3 0 N1

N2 −N1 0

53

3 Geometric transformations

If the analogy between the point P = [x, y, z] in three-dimensional space and the pure quater-
nion p = 0+ v = xi+ yj + zk is considered and further fixed a unit quaternion q = c+ u then
the following operation can be defined:

Rq(p) = qpq (3.49)

After some rearranging we get

Rq(p) = ⟨(c2 − u · u)v⟩+ ⟨2(v · u)u⟩+ ⟨2c(u× v)⟩ (3.50)

Since q is a unit quaternion, we can write q = cos(Θ) + sin(Θ)n and get:

Rq(p) = ⟨cos(2Θ)v⟩+ ⟨(1− cos(2Θ))(n · v)n⟩+ ⟨sin(2Θ)(n timesv)⟩ (3.51)

The established relations are of fundamental importance:

• Rqdescribes the 3D rotation of any point P around the angle 2Θ over the axis N .

• Conversely, a rotation R(Θ) in 3D is completely determined by the quaternion q. The
rotation of the point P simplifies to two multiplications with q and q with .

p′ = qpq (3.52)
q = cos(Θ/2) + sin(Θ/2)n (3.53)

(3.54)

3.5.4 Translations and concatenations

The translation as well as concatenations of rotations and translations can also be described
using quaternions. This is particularly interesting for animation applications. If p and t are pure
quaternions, which describe the point P in space and a translation vector t, then the following
relationship applies:

p′ = p+ t (3.55)

Furthermore, if r is a unit quaternion that describes the rotation, translation and rotation can be
concatenated in the form of the operator M(t,r).

p→ p′ = M(t,r)(p) = rpr + t (3.56)

M(0,r) describes the pure rotation and M(t,1) the pure translation. Fig. 3.11 illustrates the con-
nection.
The resulting transformation can be composed by

M(t,r) = M(0,r) ·M(t,1) (3.57)

In a similar way, successive translations and rotations, such as those performed by the camera
during an animation, can be linked. Let M(t0,r0) be an initial transformation from the origin
of the world coordinate system. Each further transformation of the coordinate system M(ti,ri)

leads to an overall transformation

M(t,r) = M(t0,r0) ·M(ti,ri) (3.58)

54

3.5 3D rotations and translations with quaternions

Figure 3.11: concatenation of translation and rotation

where · represents a multiplication on the element M(t,r). It will

M(t,r) ·M(t′,r′) = M(t+rt′r,rr) (3.59)

A camera work could look something like Fig. 3.12 and through

M(t,r) = M(t0,r0) · ... ·M(ti,ri) · ... ·M(tn,rn) (3.60)

to be discribed. The implementation of this type of transformation is

Figure 3.12: Movement sequence of a camera coordinate system.

very simple. Only routines for the elementary operations on quaternions
defined in Section 3.5.1 have to be provided. The transformation
is now fully described by t (3 components), N (3 components) and
Θ (1 component) and no longer requires a 4x4 matrix.

55

3 Geometric transformations

56

4

Projections for 3D representation

4.1 Fundamentals of planar projections

Basically, planar projections can be divided into parallel and perspective projections. These
two basic types of projection are of fundamental importance in graphic data processing.

Figure 4.1: Parallel and perspective projection

The individual planar projection variants can be classified as follows:

4 Projections for 3D representation

Figure 4.2: Overview of the variants of the planar projection

4.1.1 Parallel Projection

Parallel projections differentiate based on the position of the projection direction relative to the
normal of the projection plane. When they align, it is termed as orthographic projections.

Orthographic Projections

• Top, Front, and Side Views:
The projection plane is orthogonal to one of the principal axes.

• Isometric Projection
The normal of the projection plane forms equal angles with all principal axes. If the
normal is denoted as n⃗ = (nx, ny, nz), then nx = ny = nz must hold.

Oblique Projections

Oblique projections are employed when the normals do not align with the projection direction.
The projection plane is orthogonal to a principal axis. However, distance and angular relation-
ships are generally not preserved.

• Cavalier View
The projection angle significantly influences the appearance of the object. In the cavalier
projection, lengths of lines parallel to the projection plane are preserved. The angle β
between the projection direction and the projection plane is 45◦. The vertical offset in the
projection, denoted by angle α, can also be varied. Adjusting the vertical offset angle will
alter the perceived "height" or "depth" of the object in the 2D projection.

58

4.1 Fundamentals of planar projections

Figure 4.3: Construction of Three Orthographic Projections

Figure 4.4: Construction of an Isometric Projection of a Unit Cube

Figure 4.5: Isometric Projection of the Unit Vectors with the Projection Direction (1, 1, 1)

• Cabinet View
In the cabinet projection, the angle β = arctan(2) = 63.43◦ is projected in one direction,
thereby reducing lengths perpendicular to the projection plane by a factor of 2. The

59

4 Projections for 3D representation

Figure 4.6: Construction of an Oblique Projection

Figure 4.7: Cavalier Projection of the Unit Cube

point P is projected onto the projection plane (x, y) at P′. β is the angle between the
projection direction and the plane, while α describes the position relative to the x-axis,
i.e., the vertical offset. Note that P and P′ are perpendicular to each other. The point
P = (0, 0, 1) is mapped to P′ = (l · cosα, l · sinα). The direction of projection is
P′ −P = (l · cosα, l · sinα,−1). The length of l is calculated as l = |P|

tanβ
.

60

4.1 Fundamentals of planar projections

Figure 4.8: Cabinet Projection of the Unit Cube

Figure 4.9: Illustration of the Angles in Cavalier and Cabinet Projection

4.1.2 Perspective projections

Perspective projections are characterized by one or more vanishing points. If a projection plane
is perpendicular to the z-axis, the resulting vanishing point is in that direction as seen from the
projection center. However, lines parallel to the x and y axes do not converge.

• 1 point projection
The number of vanishing points depends on the number of axes intersected by the projec-
tion plane. If, as in Figure 4.10, it is perpendicular to the z axis, a vanishing point results.
It is different in Figure 4.11, where both the x and the z axis penetrate the projection
plane, resulting in two vanishing points.

• 2 point projection
This is shown in Figure 4.11.

• 3 point projection
This is shown in Figure 4.12.

61

4 Projections for 3D representation

Figure 4.10: Perspective projection of the unit cube with a vanishing point

4.1.3 Coordinate systems and viewports

The projection plane and the camera coordinate system can be specified in different ways. Ba-
sically, a distinction is made between right and left systems.

Legal system

One way of specifying the camera coordinate system is to use three vectors:

• VPN: Normal on the projection plane (View Plane Normal). Also often referred to as n
or look− at.

• VRP: Reference point in the projection plane (View Reference Point). It is used to define
the image plane, but can also be defined by a second vector in the image plane, as in the
links system described later.

• VUP: Defines the v direction in the projection plane (View Up Vector).

62

4.1 Fundamentals of planar projections

Figure 4.11: Perspective 2-point projection of the unit cube (in this drawing, the projection plane corre-
sponds to the drawing plane.

The projection window can be defined with the window center (center of window: CW) on the
projection plane. The limitations of the projection windows result in viewing volumes, which
can have a different shape depending on the type of projection.

Link system

The advantage of a links system is the positive z-axis to describe the distance to the viewer. The
following terms are commonly used in ray tracing programs. Here, too, the projection is clearly
described by K, R(look-at), Up and Right.

4.1.4 Clipping Planes

As described in Chapter 5, object clipping is an important process within the graphics pipeline.
In addition to the natural clipping planes along the viewing volume, Front Planes and Back
Planes are often introduced.

63

4 Projections for 3D representation

Figure 4.12: Example of a 3 point projection (projection plane intersects all 3 coordinate axes) compared
to the 2 point projection of the same object (only the x and y axes are intersected

Figure 4.13: Plane of projection in the legal system

Figure 4.14: Right-hand reference coordinate system given by the u,v, and n-axis (camera or viewing
coordinate system)

64

4.2 Mathematics of projection types

Figure 4.15: Viewing volumes for parallel and perspective projection

Figure 4.16: Plane of projection in the left system

Figure 4.17: Clipping planes with perspective projection

4.2 Mathematics of projection types

For the perspective projection, it should apply in the following that the projection plane is
perpendicular to the z axis at a distance d from the origin. In the case of parallel projection, the

65

4 Projections for 3D representation

Figure 4.18: Clipping planes in oblique parallel projection

z = 0 plane should be imaged (camera coordinate system).

4.2.1 Perspective projection

Figure 4.19: Perspective projection

In the perspective projection of Figure 4.19 the following applies:

66

4.2 Mathematics of projection types

xp

d
=

x

z

yp
d

=
y

z

solved for xp or yp results

xp =
d · x
z

=
x

z/d
yp =

d · y
z

=
y

z/d

for z ̸= 0.

Using the homogeneous coordinates, the projection can be expressed by the following 4x4
matrix:

Mper =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/d 0

 (4.1)

In general, one obtains the point Pp in homogeneous coordinates [X, Y, Z,W]T by

Pp =

X

Y

Z

W

 = Mper ·P =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/d 0

 ·

x

y

z

w

or

Pp = [X Y Z W]T =
[
x y z

z

d

]
The 3D coordinates transformed into the (z = d) plane result from homogenization

[
X

W
,
Y

W

Z

W

]
= [xp, yp, zp] =

[
x

z/d
,

y

z/d
, d

]
(4.2)

An alternative projection into the (z = 0)-plane with center z = −d results

xp

d
=

x

z + d

yp
d

=
y

z + d

or

xp =
d · x
z + d

=
x

(z/d) + 1
yp =

d · y
z + d

=
y

(z/d) + 1

67

4 Projections for 3D representation

Figure 4.20: Alternative perspective projection into the (z=0)-plane

As a 4x4 matrix one obtains

M′
per =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1/d 1

 (4.3)

4.2.2 parallel projection

An advantage of the projection into the (z = 0) plane is that for d → −∞ the perspective
projection is transformed into the parallel projection. The above variables then assume the
following values.

xp = x yp = y zp = 0

and

Mplace =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 (4.4)

4.2.3 General formulation

A uniform description of parallel and perspective projection is desirable, with any projection
center COP, as shown in Figure 4.21. This also allows projections with multiple vanishing

68

4.2 Mathematics of projection types

points to be calculated.

Given:

• COP

• Projection plane (0, 0, zp)

• Point P(x,y,z)

• normalized direction vector (dx, dy, dz) with distance Q

Searched:

• Projection coordinates (xp, yp, zp)

Figure 4.21: Illustration for the derivation of a general formulation for the projection

The straight line from P to COP results in parametric representation:

COP+ t(P−COP), 0 ≤ t ≤ 1

or for each point P′(x′, y′, z′)to

x′ = Q× dx + (xQ× dx)× ty′ = Q× dy + (yQ× dy)× tz′ = (zp +Q · dz) + (z − (zp +Q · dz)) · t

The projection Pp of P results from the intersection of the straight line and the projection plane.
Out of

zp = (zp +Q · dz) + (z − (zp +Q · dz)) · t

you get

69

4 Projections for 3D representation

t =
zp − (zp +Q · dz)
z + (zp +Q · dz

With that comes about

xp =
xz · dx

dz
+ zp · dxdz

zp−z
Q·dz + 1

yp =
yz · dy

dz
+ zp · dydz

zp−z
Q·dz + 1

By extension, zp can be used as

zp = zp ·
zp−z
Q·dz + 1
zp−z
Q·dz + 1

=
−z · zp

Q·dz +
z2p+zp·Q·dz

Q·dz
zp−z
Q·dz + 1

express and one gets a general 4x4 matrix:

Mgeneral =

1 0 −dx

dz
zp

dx
dz

0 1 −dy
dz

zp − dy
dz

0 0 (− zp
Qdz

)
z2p
Qdz

+ zp

0 0 − 1
Qdz

zp
Qdz

+ 1

 (4.5)

The previous formulations then result from Mgeneral as follows:

zp Q [dx dy dz]

Mort 0 ∞ [0 01]

Mper d d [0 0 − 1]

M′
per 0 d [0 0 − 1]

The cavalier and cabinet projections result in:

zp Q [dx dy dz]

Cavalier 0 ∞ [cosα sinα1]

Cabinet 0 ∞ [cosα
2

sinα
2
− 1]

4.2.4 summary

In practical applications, the perspective mapping of a scene in world coordinates is achieved
through the following steps:

70

4.2 Mathematics of projection types

Figure 4.22: Transition from world coordinates to camera coordinates

1. The viewing transformation first leads to the camera coordinate system by means of an
affine mapping (translation and rotation):

xk

yk

zk

wk

 = Mk ·

x

y

z

w

2. In order for the z-axis to point in the positive direction, a left-hand system is used:

x′k

y′k

z′k

w′k

 = MRL ·

x

y

z

w

3. In the simplest case, the 2D projection is achieved by z-division

xp = x′k ·
d

z′k
= u

yp = y′k ·
d

z′k
= v

zp = d

d creates a zoom effect. By additionally defining the window (umin, umax, vmin, vmax), a
specified opening angle (e.g. 46◦ with a 50mm lens) can be achieved.

71

4 Projections for 3D representation

Remark: The model described here is just a pinhole model. Non-linearities and edge distortions
are not taken into account.

Given:

• UP vector

• Loot-At vector

The mapping into the camera coordinate system was done by translation at its origin and by
rotation, so that
x axis = hx vector
y axis = hy vector
z axis = hz vector

The following applies:

hx = −
UP × Look − At

||UP × Look − At||

hy =
UP

||UP ||

hz = −
LookAt

||LookAt||

The orthogonality of the rotation matrix results in the resulting transformation as a concatena-
tion of the individual operations.

MLR ·MT ·MR =

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

1 0 0 −Px

0 1 0 −Py

0 0 −1 −Pz

0 0 0 1

hx1 hx2 hx3 0

hy1 hy2 hy3 0

hz1 hz2 hz3 0

0 0 0 1

 (4.6)

=

hx1 hx2 hx3 −Px

hy1 hy2 hy3 −Py

−hz1 −hz2 −hz3 −Pz

0 0 0 1

 (4.7)

72

5

Clipping

In contrast to the ray tracing method (see Chapter 10), which is still to be discussed, clipping,
hidden surface calculations and scan conversion must be carried out for direct image generation
by projecting primitives into the image plane.
The algorithms required for this are presented in the following chapters. You deal with elemen-
tary algorithms to solve these problems. This chapter covers 2D and 3D clipping, while Chapter
6 deals with scan conversion and Chapter 7 with hidden line and hidden surface problems.

5.1 Introduction

One of the basic tasks when processing geometry is the limitation of lines and polygons to
a given rectangle (viewport, window) in 2D or to a viewing volume in 3D. This processing
step is called clipping. It is used both to accelerate the display of graphic primitives and to
avoid overflow-related artefacts (depending on the hardware). Basic algorithms are particularly
important for lines and polygons, since more complex primitives are represented in most cases
using linear or planar approximations. 2D clipping of lines to rectangles always results in line
segments, but clipping of concave polygons can result in multiple polygons.

5.2 Line clipping in 2D

For line clipping on a rectangle, an inside-outside preselection of the line end points is first
carried out. The following three cases must be distinguished.

I. If both endpoints are inside the rectangle, no clipping is necessary.

5 Clipping

Figure 5.1: Line clipping in 2D

Figure 5.2: Polygon clipping in 2D

II. If one endpoint is inside and one is outside the rectangle, clipping is necessary. This
requires intersection calculations.

III. If both points are outside, clipping may be necessary if the clipping rectangle is intersected
by the lines. Further tests must be carried out.

A point (x, y) is inside the clipping rectangle (xmin, xmax, ymin, ymax) if

xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

5.2.1 brute force method

For all cases under II and III, calculate the intersections with the four boundary lines of the rect-
angle and use the intersection points to decide whether line clipping is necessary. For example,
in Figure 5.1, G′ and H ′ intersect inside, while I ′ and J ′ intersect outside. For this we set up

74

5.2 Line clipping in 2D

the parametric form of a straight line, which can be expressed as:

x = x0 + t(x1 − x0) (5.1)
y = y0 + t(y1 − y0) (5.2)

These equations describe (x, y) on the line segment from (x0, y0) to (x1, y1) for the parameter
t in the range [0, 1]. In order to intersect two straight lines, the equations for the rectangle edge
with the parameter tedge as well as for the line itself with the parameter tline have to be set up
and the resulting system of equations has to be solved. If both parameters are in the range [0, 1],
clipping is necessary. Furthermore, the special case of a line parallel to an edge of a rectangle
must be dealt with before the above equations can be solved. Because of the computational
effort involved in this approach, it is inefficient and not used in practice.

5.2.2 Cohn-Sutherland Algorithm

This is a traditional, but quite efficient algorithm, which is particularly suitable for hardware
implementations.

To avoid computationally expensive intersection calculations, an attempt is made to accept or
eliminate as many lines as possible through simple comparisons (as in step I, for example). If
this does not succeed, the line is divided into two segments, one of which can be treated once.
So you get a two-step process:

1. step: sectioning of the plane

The basic idea for a quick preselection of lines is to check whether both end points are in
certain sections with respect to the clipping rectangle. The following 4-bit code is used
for this:

Figure 5.3: 4-bit codes of the different regions

The individual bits have the following meaning:

75

5 Clipping

1. Bit: In the half-plane above the upper edge y > ymax

2. Bit: In the half-plane below the lower edge y < ymax

3. Bit: In the half-plane to the right of the right edge x > xmax

4. Bit: In the half-plane to the left of the left edge x > xmax

The bits resulted as signs from the following subtractions:

1. Bit: ymax − y

2. Bit: y − ymin

3. Bit: xmax − x

4. Bit: x− xmin

Such a code is calculated for each line end point. Then the codes of the two line end
points are binary AND-linked. If code1 ∧ code2 ̸= 0 the line can be removed because
there is no intersection with the clipping rectangle. For code1 ∨ code2 = 0 the line is
entirely within the clipping rectangle.

For example, the following codes result for the lines in Fig. 5.1:

line code1 code2 code1 ∧ code2

A→ B 0000 0000 0000

C→ D 0000 1000 0000

E→ F 0001 1001 0001

G→ H 0100 0010 0000

I→ J 0100 0010 0000

2. Step: Iterative Subdivision

Using the codes of the line endpoints and the tests performed in step 1, it can be deter-
mined which edges of the clipping rectangle will be intersected.

Point D in Fig. 5.4 has the code 1001, ie the top and left edges must be cut. A line that
survived the tests in step 1 is now divided at one of its intersections with the rectangle
edges. For this purpose, a fixed order is specified for the interpretation of the bits in
the code (e.g. top → bottom → right → left). Now the following steps are carried out
iteratively until the line is trivially accepted:

• Selection of one of the two points of the line. (The point must be in the outer half-
plane of a rectangle edge)

• Split the line into two segments at its intersection with the highest priority rectangle
edge

• Eliminate segment point→ intersection

76

5.2 Line clipping in 2D

Figure 5.4: Illustration of the Cohen-Sutherland clipping

• Calculation of the code for the intersection

• Iteration until the remainder segment is trivially accepted

In Fig. 5.4, point D is first selected by the algorithm as the starting point and then the
intersection point B is calculated because of the priority convention (up→ down→ right
→ left).D → B is eliminated and B → A is accepted. The line E → I , on the other
hand, has to be treated several times. The algorithm first chooses E(0100) and computes
the intersection H(0010) and the remainder segment E → H . For this, E is selected as
the starting point and F is first calculated based on the priorities. Finally, the clipped lines
are calculated from F → H by dividing them into G.

The algorithm is particularly suitable for very small and very large rectangles (eg picking).
Another advantage is the easy expansion to 3D. A disadvantage are sometimes unnecessary
intersection calculations like in the example of the intersection H).

The Cohen-Sutherland algorithm in C code:

#define NIL 0
#define LEFT 1
#define RIGHT 2
#define BOTTOM 4
#define TOP 8

/* clipping rectangle coordinates are global */
float xmin, xmax;
float ymin, ymax;
/* returns outcode for a point x,y */
short CompOutCode(float x, float y) {

short outcode;
outcode = NIL;
if (y > ymax)

outcode |= TOP;
else if (y < ymin)

77

5 Clipping

outcode |= BOTTOM;
if (x > xmax)

outcode |= RIGHT;
else if (x < xmin)

outcode |= LEFT;
return outcode;

}

/**
Cohen−Sutherland clipping algorithm
for the line from P0 to P1 against a
clipping rectangle.

−−> x0, y0: P0
−−> x1, y1: P1
(−−> xmin, xmax, ymin, ymax: clipping rectangle)
**/
void CohenSutherlandLineClipAndDraw(float x0, float y0, float x1, float y1) {

int accept = FALSE;
int done = FALSE;
float x, y;
float slope = (y1 − y0) / (x1 − x0);
short outcode0, outcode1;
short outcodeOut;

outcode0 = CompOutCode(x0, y0);
outcode1 = CompOutCode(x1, y1);
do {

if (!(outcode0 | outcode1)) {/* trivial inside */
accept = TRUE;
done = TRUE;

}
else if ((outcode0 & outcode1))/* trivial outside */

done = TRUE;
else {
/* If the previous two tests failed, the
intersection are calculated. At least one endpoint
the line to be clipped is outside −−> outcodeOut */

if (outcode0)
outcodeOut = outcode0;

else
outcodeOut = outcode1;

/* now find the intersection using the relations
y = y0 + slope*(x − x0),
x = x0 + 1/slope*(y − y0) */

78

5.2 Line clipping in 2D

if (outcodeOut & TOP) {
x = x0 + (x1 − x0)*(ymax − y0)/(y1 − y0);
y = ymax;

}
else if (outcodeOut & BOTTOM) {

x = x0 + (x1 − x0)*(ymin − y0)/(y1 − y0);
y = ymin;

}
else if (outcodeOut & RIGHT) {

y = y0 + (y1 − y0)*(xmax − x0)/(x1 − x0);
x = xmax;

}
else if (outcodeOut & LEFT) {

y = y0 + (y1 − y0)*(xmin − x0)/(x1 − x0);
x = xmin;

}

/* Move the outside endpoint
to the intersection and preparation of the next
loop iteration */
if (outcodeOut == outcode0) {

x0 = x;
y0 = y;
outcode0 = CompOutCode(x0, y0);

}
else {

x1 = x;
y1 = y;
outcode1 = CompOutCode(x1, y1);

}
}

} while (!done);

/* draw line */
if (accept)

MidpointLineReal(x0, y0, x1, y1);
}

5.2.3 Parametric line clipping (Liang-Barsky / Cyrus-Beck)

The essential feature of this algorithm is the calculation of all points of intersection in the only
one-dimensional parameter space of the straight line. The algorithm works as follows:

1. step: calculation of the cut in the parameter space

79

5 Clipping

With the Cohen-Sutherland algorithm, the (x, y) coordinates or in 3D the (x, y, z) coordi-
nates are calculated for each intersection point. The description of the intersection points
in the 1D parameter space of the straight line is much more efficient. The following
situation is assumed for this:

Figure 5.5: Dot product for three points, one outside, one inside and one on the clipping rectangle

The line from P0 to P1 is to be clipped at the edge Ei of the clipping rectangle with the
normal Ni pointing outwards. The following parametric representation can be found for
this line:

P (t) = P0 + (P1 − P0)t witht ∈ [0, 1] (5.3)

For any point PEi
on the edge Ei the scalar product Ni ·(P (t)−PEi

) for all points P (t) on
the line is either positive, negative or equal to zero, depending on which half-plane P (t)
lies in relation to the edge. The required parameter of the point of intersection results
from:

Ni · [P (t)− PEi
] = 0 (5.4)

By inserting (5.1)
Ni · [P0 + (P1 − P0)t− PEi

] = 0

we find with D = P1 − P0

t =
Ni · [P0 − PEi

]

−Ni ·D
for Ni ·D ̸= 0 (5.5)

The condition Ni· ≠ 0 is met if neither the normal nor the line itself have length 0 and the
line and clipping edge are not parallel. Since the line generally intersects all edges of the
clipping rectangle, one finds (by inserting the pairs (PE1 , N1)...(PE4 , N4) into equation
(5.3)) four values for the parameter t to describe the four intersections.

2. Step: Determining the intersection points relevant for clipping

First it is tested whether all t ∈ [0, 1], otherwise the intersection is not inside the line
segment P0 → P1. The problem of determining the intersection points of the line with
the clipping rectangle remains.

80

5.2 Line clipping in 2D

Figure 5.6: Lines diagonal to the clipping rectangle

In the example from Fig. 5.6, both intersection points are relevant for line 1, none for line
2 and only two of four for line 3. The box-cut test method is used to solve the problem.
Each box edge defines two half-planes (inside and outside according to the definition of
the normal). If you come across intersections from P0 to P1, which are traversed from
outside to inside, then these are Entry Points (PE), otherwise Leaving Points (PL). The
characterization of the intersection points according to PE or PL is based on the sign of
the scalar product:

Ni ·D < 0⇒ PE (Angle greater than 90◦)
Ni ·D > 0⇒ PL (Angle smaller than 90◦)

After the intersection points have been characterized, it must still be determined which of
the entry points and exit points lies on the boundary of the clipping rectangle. The valid
entry point is the one with the largest parameter value t, the valid exit point is the one
with the smallest t.

tE = max⟨tEi
|PE⟩

tL = min⟨tLi
|PLi
⟩

If tE > tL, there is no relevant intersection. Otherwise the clipped line is described by
the interval [tE, tL].

The algorithm according to Cyrus-Beck in pseudocode is as follows.

compute all Ni and choose a PEl
for each edge;

/* Note that for the PEi
of each edge that component

is irrelevant, which is equal to 0 at the corresponding normal */

for (each line segment to clip){
if (P1 == P0)

Line is degenerate, so clip it as a point;
else {

81

5 Clipping

tE = 0; tL = 1;
for (every possible cut with a clip edge){

/* ignore edges parallel to the line */
if (!= 0){

calculated;
use the sign of Ni · D to
to make the case distinction PE or PL;
if (Ni · D < 0) tE = max(tE, t);/* PE */
if (Ni · D > 0) tL = min(tL, t);/* PL */

}
}
if (tE > tL)

return NULL;
else

return P(tE) and P(tL);
}

}

The calculations required for each edge of the clipping rectangle are illustrated in Fig. 5.7:

Clip edgei Normal Ni PEi
P0 − PEi

t =
Ni·(P0−PEi

−Ni·D

left : x = xmin (−1, 0) (xmin, y) (x0 − xmin, y0 − y) −(x0−xmin)
(x1−x0)

right : x = xmax (1, 0) (xmax, y) (x0 − xmax, y0 − y) (x0−xmax)
−(x1−x0)

bottom : y = ymin (0,−1) (x, ymin) (x0 − x, y0 − ymin)
−(y0−ymin)

(y1−y0)

top : y = ymax (0, 1) (x, ymax) (x0 − x, y0 − ymax)
(y0−ymax)
−(y1−y0)

Table 5.1: Table of calculations required for parametric clipping

In each case one coordinate of the normal is 0. The parameter t thus results from the quotient of
the distance to the respective edge and the gradient in this direction. The signs of the numerator
and denominator must be preserved.

The exact algorithm according to Liang-Barsky is as follows:

/** ****************
CLIPt calculates a new value of tE or tL for an inner
Intersection of a line segment with an edge.
Parameter:
denom: −(Ni · D) (= dx or dy, for horizontal clipping rectangles),

the sign determines whether the PL or PE case is present
num: Ni · (P0 − PEi) for a single edge−line combination,

which, in the case of upright clipping rectangles, the directional high

82

5.2 Line clipping in 2D

describes rizontal or vertical distance from P0 to an edge;
the sign determines the visibility of P0 and decides
the trivial case that lines lie parallel to the edges.

If a line segment is eliminated, FALSE is returned,
otherwise tE and tL for the part of the segment
mentes that lies inside the edge adjusted.
tE: t−value for intersection point from outside to inside
tL: t−value for intersection from inside to outside
** ***************/
boolean CLIPt (float denom, float num, float *tE, float *tL) {

float t;
boolean accept;

accept = TRUE;
if (denom > 0) { /* PE cut */

t = num/denom; /* t−value at intersection */
if (t > *tL) /* tE and tL swapped */

accept = FALSE;/* line is rejected */
else if (t > *tE) /* a new tE was found */

*tE = t;
}
else if (denom < 0) {/* PL cut */

t = num/denom; /* t−value at intersection */
if (t < *tE) /* tE and tL swapped */

accept = FALSE;/* line is rejected */
else if (t < *tL) /* a new tL was found */

*tL = t;
}
else /* line parallel to rectangle */

if (num > 0) /* line outside the edge */
accept = FALSE;

return accept;
}

/** ****************
Clips a 2D line segment with endpoints x0, y0, x1, y1 against a clipping
rectangle with the corners at xmin, ymin, xmax and ymax,
which have been declared as global variables. The flag becomes visible
then set to TRUE if in the endpoint parameters a clipped
line segment is returned, otherwise FALSE.
** ***************/
void Clip2D (float *x0, float *y0, float *x1, float *y1, boolean *visible)
{

float tE, tL;
float dx,dy;

83

5 Clipping

dx = *x1 − *x0;
dy = *y1 − *y0;
*visible = FALSE;

/* Test if line is degenerate to point; if this is the case
is, clip point using min−max test in ClipPoint */
if (dx == 0 && dy == 0 && ClipPoint(*x0, *y0))

*visible = TRUE;
else {

tE = 0;
tL = 1;

if (CLIPt(dx, xmin − *x0, &tE, &tL))
if (CLIPt(−dx, *x0 − xmax, &tE, &tL))

if (CLIPt(dy, ymin − *y0, &tE, &tL))
if (CLIPt(−dy, *y0−ymax, &tE, &tL)) {

*visible = TRUE;
if (tL < 1) {

/* Calculation of the new PL
intersection only if
really necessary */
*x1 = *x0 + tL * dx;
*y1 = *y0 + tL *dy;

}
if (tE > 0) {

/* Calculation of the new PE
intersection */
*x0 = *x0 + tE * dx;
*y0 = *y0 + tE * dy;

}
}

}
}

As an assessment, it can be said that parametric clipping is generally
better if many lines cannot be eliminated by the trivial pre-sorting
of the Cohen-Sutherland algorithm. Otherwise, both methods can be
combined

5.3 Polygon clipping in 2D

As already shown in Fig. 5.2, different cases can occur when clipping polygons. In particular,
concave polygons are more difficult to deal with because they can break up into several sub-
polygons (Fig. 5.2a). Nevertheless, polygons can be viewed as sets of connected lines.

84

5.3 Polygon clipping in 2D

5.3.1 Identification of convex polygons

Definition: An n-sided polygon consisting of {P1, P2, ..., Pn} is called convex if for ∀i, j ∈
[1, n] all points on the distance PiPj lie within the polygon.

Figure 5.7: difference between convex and concave polygon

The check for convexity can be done via the cross products of neighboring edges:

• If all cross products are 0, then the polygon is collinear.

• If some of the cross products are greater than 0 and some are less than 0, then the polygon
is concave.

• If all cross products are greater than 0 or all less than 0, the polygon is convex

Figure 5.8: Sign of the cross products for testing convex polygons

Since the cross product is defined in R3, the points have to be supplemented

with a third dimension. The following applies:

P0x

P0y

0

 ×

P1x

P1y

0

85

5 Clipping

5.3.2 Sutherland-Hodgeman algorithm

The following algorithm allows clipping of arbitrary polygons to convex polygons using divide
and conquer strategies. In doing so, all edges of the convex polygon are successively clipped.
Figure 5.10 shows the procedure for a rectangular clipping polygon.

Figure 5.9: Polygon clipping at a rectangular clipping window

The polygon is described by a vertex list P1, ..., Pn and by an edge list P1P2, P2P3, ...PnP1.
The successive clipping of the polygon at all edges creates new vertices and edges if necessary.

The clipping process is reduced to the calculation of the clipping of individual polygon edges
(i.e. lines) on individual rectangular edges. By determining a direction of rotation, all edges
receive a direction. If S is the starting point of a polygon edge and P is the end point, the four
cases in Fig. 5.11 result.

During the tests, a new corner point list Q is generated, to which the output of the individual
tests is added. For example, if the edge runs into the inner area of the rectangle, both the
intersection point I and the end point P must be added. However, S is not included because it
is output from a previous test. The list is initialized with a starting point F if this is within the
rectangle. The edge PnF is treated like any other edge.
To distinguish the four cases mentioned, a quick visibility test must be found that determines
whether a point lies within the clipping polygon. This is done, for example, by testing the point
against the clipping edge, as shown in the example in Fig. 5.12.

P1P2 describes the edge, P3 the point to be tested. The edges P1P2 and P1P3 span a plane.

86

5.3 Polygon clipping in 2D

Figure 5.10: Relationship when clipping edges on lines

Figure 5.11: visibility test

If they lie in the xy plane, the cross product P1P3 × P1P2 has only one z component, which
consists of (x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1) results. Three cases can be distinguished:

• z component positive: The point is to the right of P1P2

• z component equals 0: The point is on P1P2

• z component negative: The point is to the left of P1P2

Figure 5.13 shows the flowchart for the Sutherland-Hodgeman algorithm for each individual
edge. Part a is executed for each point, part b only for the last one.

The algorithm can be implemented in hardware via pipelining. Known line algorithms that have
already been presented are called up for the individual tests.

Example: Clipping a polygon at the unit square (−1,−1), (1, 1)

The following table shows the results after clipping at the various boundary edges of the square:

87

5 Clipping

Figure 5.12: Flowchart of the Sutherland-Hodgeman algorithm

Original
polygon

Clipped
against left
edge

Clipped
against top
edge

Clipped
against
right edge

Final pol-
gon

P1 (1/2,−3/2) (1/2,−3/2) (1/2,−3/2) (1/2,−3/2) (−1, 1)

P2 (−2,−3/2) (−1,−3/2) (−1,−3/2) (−1,−3/2) (−1, 1)

P3 (−2,−2) (−1, 2) (−1,−1) (−1,−1) (1, 1)

P4 (3/2, 2) (3/2, 2) (3/2, 1) (1, 1) (1, 0)

P5 (3/2, 0) (3/2, 0) (3/2, 0) (1, 0) (1/2, 0)

P6 (1/2, 0) (1/2, 0) (1/2, 0) (1/2, 0) (1/2, 1)

P7 (1/2, 3/2) (1/2, 3/2) (1/2, 1) (1/2, 1) (−1, 1)

P8 (−3/2, 3/2) (−1, 3/2) (−1, 1) (−1, 1) (−1, 0)

P9 (−3/2, 1/2) (−1, 0) (−1, 0) (−1, 0) (0,−1)

Both degenerate vertices (Q2, Q7) and degenerate edges Q7Q6 are created.

88

5.3 Polygon clipping in 2D

5.3.3 Liang-Barsky polygon clipping

As with line clipping, the one-dimensional parameter space also forms the basis of calcula-
tion here. The following explanations refer to the case of window (rectangle) clipping. The
algorithm uses a presectioning of the plane as in Fig. 5.14.

Figure 5.13: Pre-sectioning of the plane

Each edge of the clipping rectangle divides the plane into a half-plane containing the rectangle
(inside region) and one not containing it (outside region). The resulting nine sections are named

89

5 Clipping

according to the number of inside regions they contain. The edges are also directed.
A polygon is given by a vertex list P1, ..Pn and by an edge list P1P2, ...PnP1. Each edge PiPi+1

is parametrically described by

P (t) = (1− t)Pi + t · Pi+1 i = 1...(n− 1) (5.6)
P (t) = (1− t)Pn + t · P1 i = n (5.7)

If the starting point of an edge to be examined is outside the rectangle, its potential intersection
point depends on the position of the starting point within the described sections (Fig. 5.15).
The algorithm uses the following observation: If the starting point of a line is within the window
and an end point is in the top left corner region, a subsequent edge can re-enter the window area
either from above or from the right (inside 2, case b in Fig. 5.15). If the window is not entered
again via the same edge that was used to leave it, the upper left window wake-up point is added
as an additional corner point. In the other case, this additional corner point is superfluous, but
does not interfere.

Figure 5.14: Different positions of the starting point in the sections

Every time a polygon edge enters an (inside 2) region, the corresponding
window corner (turning vertex) is included in the polygon list.

The test to determine whether a window corner point is included is carried out via the parametric
description of the line. As can be seen from Fig. 5.17, a line intersects the window edges at the
four points tin1, tin2, tout1, tout2 each with two entry and two leaving -Points. tin1 is always the
smallest parameter value, while tout2 represents the largest parameter value. The conditions for
the visibility of a line in the window result in:

• tin2 > tout1 No cut in the visible area (Fig. 5.17b)

• (tin2 < tout1)∧(0 < tout1∧1 > tin2) edges are partly within the window (Fig. 5.17a
)

If the edge does not intersect the window, the descriptive straight line always begins and ends
in an inside 2 section. In addition, it always runs through another inside 2 section in the middle
(Fig. 5.17). For each inside 2 section that is run through within the edge (t ∈ [0..1]), the
corresponding window corner must be included in the polygon list.

The decision about the sections that have been run through is made with the help of tout1 and
tout2:

90

5.3 Polygon clipping in 2D

Figure 5.15: necessity of a point in window vertex

Figure 5.16: The two possibilities of the intersection of a line with the window

• Criterion for a traversed region: 0 < tout1 <= 1

• criterion for entering the target section: 0 < tout2 <= 1
(also applies to lines that intersect the window)

For each polygon edge that meets the above criteria, the corresponding window corners must
be included in the polygon list.
The algorithm in pseudocode is as follows:

for (every edge e) {
determine the direction of the edge;
use these to determine which boundary lines the
clip regions that hit the straight line first;
find t−values for exit points;

91

5 Clipping

if (tout2 > 0)
find t−value for second entry point;

if (tin2 > tout1)
/* no visible segment */
if (0 < tout1 <= 1) Output_vert(turning vertex);

else
if ((0 < tout1) && (1 >= tin2)) {
/* visible segment available */

if (0 <= tin2)
Output_vert(appropriate side intersection);

else
Output_vert(starting vertex);

if (1 >= tout1)
Output_vert(appropriate side intersection);

else
Output_vert(ending vertex);

}
if (0 < tout2 <= 1) then Output_vert(appropriate corner);

} /* for each edge */

The intersection parameters t are only calculated if necessary.

The procedure must treat vertical and horizontal lines separately. In these cases, a special value
for an entry and a leaving point can be assigned based on a check dx = 0 or dy = 0.

The algorithm according to Liang-Barsky is on average twice as fast
as that according to Sutherland-Hodgeman!

5.4 Line clipping in 3D

The canonical clipping volumes in 3D for parallel and perspective projections are given by the
unit cube and the truncated pyramid, respectively (see also Chapter 4).

5.4.1 Cohn-Sutherland Algorithm

Similar to the 2D case, the space is divided into half-spaces using a code. A 6-bit code is used
in 3D, whereby the individual bits have the following meaning for the parallel projection:

1. Bit: In the half-space above the viewing volume y > 1

2. Bit: In the half-space below the viewing volume y < −1

3. Bit: In the half-space to the right of the viewing volume x > 1

4. Bit: In the half-space to the left of the viewing volume x < −1

92

5.4 Line clipping in 3D

Figure 5.17: Clipping volumes in 3D

5. Bit: In the half-space behind the viewing volume z < −1

6. Bit: In the half-space in front of the viewing volume z > 0

The 3D lines are accepted if the code of both endpoints is equal to 000000 and eliminated if the
bitwise AND of the two codes is not equal to 000000. Otherwise, the line is subdivided at the
intersection with one of the bounding planes. The parametric form of the line is used for the
calculation:

x = x0 + t(xi − x0) (5.8)
y = y0 + t(yi − y0) 0 <= t <= 1 (5.9)
z = z0 + t(zi − z0) (5.10)

Example: For an intersection with the y = 1 plane, t = (1 − y0)/(y1 − y0) if t ∈ [0..1].
Substituting into the equations (5.5) yields:

x = x0 +
(1− y0)(x1 − x0)

y1 − y0
,z = z0 +

(1− y0)(z1 − z0)

y1 − y0
(5.11)

The code for perspective projection (using a right pyramid as the viewing volume) is:

1. Bit: In the half-space above the viewing volume y > −z

2. Bit: In the half-space below the viewing volume y < z

3. Bit: In the half-space to the right of the viewing volume x > −z

4. Bit: In the half-space to the left of the viewing volume x < z

5. Bit: In the half-space behind the viewing volume z < −1

93

5 Clipping

6. Bit: In the half-space in front of the viewing volume z > zmin

The calculation of the intersection points with the boundary planes is just as easy as for the
parallel projection.
Example: In the y = z plane, y0 + t(y1 − y0) = z0 + t(z1 − z0) is valid. One finds for t:

t =
(z0 − y0)

(y1 − y0)− (z1 − z0)

and insertion into (5.5) yields for the remaining coordinates:

x = x0 +
(x1 − x0)(z0 − y0)

(y1 − y0)− (z1 − z0)
, y = y0 +

(y1 − y0)(z0 − y0)

(y1 − y0)− (z1 − z0)

5.4.2 Parametric Clipping

When clipping using the 3D variant of the Liang-Barsky algorithm, six different parameters t
have to be calculated in the worst case. An optimized variant similar to the ray box test in ray
tracing (see Chapter 10) is used for clipping on a cuboid (parallel projection). The transition
to the viewing pyramid (perspective projection) results in new relationships for the variables
Ni, PEi

, P0 − PEi
. They are given as follows:

Clip edge Outward
normal Ni

Point on
edge PEi

P0 − PEi
t =

Ni·(P0−PEi

−Ni·D

right : x = −z (1, 0, 1) (x, y,−x) (x0 − x, y0 − y, z0 + z) (x0−x)+(z0+x
−(dx+dz)

= x0+z0
−dx−dz

left : x = z (−1, 0, 1) (x, y, x) (x0 − x, y0 − y, z0 − z) −(x0−x)+(z0−x
(dx−dz) = −x0+z0

dx−dz

bottom : y = z (0,−1, 1) (x, y, y) (x0 − x, y0 − y, z0 − y) −(y0−y)+(z0−y
(dy−dz) = −y0+z0

dy−dz

top : y = −z (0, 1, 1) (x, y,−y) (x0 − x, y0 − y, z0 + y) (y0−y)+(z0+y
−(dy−dz) = y0+z0

−dy−dz

front : z = zmin (0, 0, 1) (x, y, zmin) (x0 − x, y0 − y, z0 + zmin)
(z0−zmin)
−dz = z0+zmin

dz

back : z = −1 (0, 0,−1) (x, y,−1) (x0 − x, y0 − y, z0 + 1) −(z0+1)
dz

= z0−1
dz

Table 5.2: Table of calculations needed for parametric 3D clipping

The sign of the denominator (NiD) describes the type of intersection (PE entry point, PL leav-
ing point). The following algorithm results. (The function CLIPt is the same as in Liang-
Barsky’s algorithm in chapter 5.2.3)

void Clip3D (float *x0, float *y0, float *z0,
float *x1, float *y1, float *z1,
float zmin, boolean *accept)

{
float tmin, tmax;
float dx,dy,dz;

94

5.5 Clipping in homogeneous coordinates

accept = FALSE;
t min = 0;
t max =1;
dx = *x1 − *x0;
dz = *z1 − *z0;
if (CLIPt(−dx−dz, *x0+*z0, &tmin, &tmax)) /* right */

if (CLIPt(dx−dz, −*x0+*z0, &tmin, &tmax)) { /* left */
dy = *y1 − *y0;

if (CLIPt(dy−dz, −*y0+*z0, &tmin, &tmax)) /* bottom */
if (CLIPt(−dy−dz, *y0+*z0, &tmin, &tmax))/* top */

if (CLIPt(−dz, *z0−zmin, &tmin, &tmax))/* front */
if (CLIPt(dz, −*z0−1, &tmin, &tmax)) { /* back */

accept = TRUE;
/* if end point (t==1) not visible,
compute intersection */
if (t max < 1) {

*x1 = *x0 + tmax * dx;
*y1 = *y0 + tmax * dy;
*z1 = *z0 + tmax * dz;
}

/* if endpoint (t==0) not visible,
compute intersection */
if (t min > 1) {

*x0 = *x0 + tmin * dx;
*y0 = *y0 + tmin * dy;
*z0 = *z0 + tmin * dz;

}
}

}
}

5.5 Clipping in homogeneous coordinates

The clipping algorithms are often performed in homogeneous coordinates. The perspective
projection can be converted into a parallel projection using the matrix M.

M =

1 0 0 0

0 1 0 0

0 0 1
1+zmin

−zmin

1+zmin

0 0 −1 0

 zmin ̸= −1 (5.12)

95

5 Clipping

The consequence of this is that the viewing volume degenerates into a cuboid and thus al-
lows the use of a single (optimized) clipping procedure for the various projection types. The
viewing cuboid in parallel projection is defined in homogeneous coordinates by (remember:
x = X/W, y = Y/W, z = Z/W):

−1 <=
X

W
<= 1, −1 <=

Y

W
<= 1, −1 <=

Z

W
<= 0 (5.13)

The corresponding plane equations become:

x = −W, X = W, Y = −W, Y = W, Z = −W, Z = 0 (5.14)

The cases W > 0 and W < 0 must be considered separately:

W > 0 : −W <= X <= W, −W <= Y <= W, −W <= Z <= 0 (5.15)
W < 0 : −W >= x >= W, −W >= Y >= W, −W >= Z >= 0 (5.16)

Example in which the cases W > 0 and W < 0 are not treated separately: The points P1 and P2

in homogeneous coordinates have the same 3D coordinates. Clipping at Region A incorrectly
eliminates P2.

Points with any W<0 can arise in the parametric description of curves
and surfaces, especially in the case of non-uniform rational B-splines
(NURBS) and isolated Bézier splines (cf. Part II of the script).

96

6

Scan Conversion

Since all modern graphics systems work with raster graphics, there is a need for algorithms
to convert the (transformed, illuminated and clipped) primitives into individual discrete pixels.
This process is called scan conversion. Since millions of primitives per second usually have
to be processed in real-time applications, computing efficiency is of the utmost importance.
The pixels generally lie on a regular integer grid. For the sake of simplicity, the binary case is
assumed first, i.e. a pixel can be either white or black.

6.1 Lines

The basic problem is to approximate an (infinitely) thin line as optimally as possible using a
finite number of pixels of finite extent. This is trivial for line slopes m = 0,−1, 1 and∞. But
not with any m, as shown in Fig. 6.1.

6.1.1 First incremental algorithm (Digital differential analyzer)

The naive approach is as follows: Calculate m as ∆y/∆x for the line in the viewport’s co-
ordinate system (Windows) and start with the smaller x value of the two line endpoints. Let
x0 = round(xmin) be the minimum x value rounded to an integer pixel address. The pixel
address is calculated by calculating the y value for an integer xi and rounding it off. The result
is the address (xi, round(yi)). Thereby xi+1 is calculated by incrementing xi by δx and

yi+1 = m · xi+1 +B = m(xi + δx) +B = yi +m · δx
with B = y0 −m · x0

6 Scan Conversion

Figure 6.1: scan-converted line

Thus all points on the line are defined recursively, where for δx = 1 it follows:

xi+1 = xi + 1

yi+1 = round(yi +m)

Figure 6.2: Incremental calculation of (xi, yi)

The algorithm determines the pixels with the smallest distance to the straight line. For |m| > 1
the roles of x and y must be swapped: dx = dy/m = 1/m. Horizontal, vertical and diagonal
lines are treated as special cases. The following algorithm results:

void Line(int x0, int y0, int x1, int y1) {

int x;
float dx,dy,y,m;

/* Assumption: −1 <= m <= 1, x0 < x1 */
dy = y1−y0;
dx = x1−x0;

98

6.1 Lines

m = dy/dx;
y = y0;
for (x = x0; x <= x1; x++) {

WritePixel(x, round(y));
y += m;

}
}

The endpoints of the line are converted to integer addresses by rounding operations. The main
disadvantage of this method is the time-consuming call of the round() function, the use of float
arithmetic, and a principle accumulation of errors.

6.1.2 Bresenham’s algorithm

The basic idea of the Bresenham algorithm is to quickly decide for gradients 0 < m < 1 and in-
crements of ∆x = 1 which of the two possible pixels in the next column (NE or E, see Fig. 6.3)
must be set. This is done by determining the side on which the intersection Q lies with respect
to the midpoint M . This always selects the pixel with the smallest distance to Q.

To calculate the midpoint criterion, the straight line is described in implicit form:

F (x, y) = ax+ by + c = 0 (6.1)

With the same straight line in explicit form

y =
dy

dx
x+B (6.2)

is obtained with a = dy, b = −dx and c = dx ·B

F (x, y) = dy × x− dx× y + dx×B = 0 (6.3)

In general, the implicit definition of nonlinear curves f(x, y) = c
or surfaces f(x, y, z) = c is advantageous because it enables fast localization
tests.

To apply the midpoint criterion, given the point (xp, yp), the function F must be evaluated at
the point M :

d = F (M) = F

(
xp + 1, yp +

1

2

)
(6.4)

With d > 0 the choice falls on the pixel NE, with d < 0 on E.

Since the algorithm uses the decision variable d to set the pixels, d should be able to be calcu-
lated as quickly as possible, i.e. incrementally. In the example, suppose the pixel E im has been

99

6 Scan Conversion

Figure 6.3: Points M and Q, as well as pixels N and NE in the Bresenham algorithm

selected. Then x is incremented by 1 and the midpoint criterion dnew for the new point results
in:

dnew = F

(
xp + 2, yp +

1

2

)
= a(xp + 2) + b

(
yp +

1

2

)
+ c (6.5)

So dnew also results from:

dnew = dold + a = a(xp + 1) +

(
yp +

1

2

)
+ c+ a (6.6)

From (6.5) and (6.6) the increment for d in this case becomes

∆E = a = dy (6.7)

An increment ∆NE can be calculated in the same way:

dnew = F

(
xp + 2, yp +

3

2

)
= a(xp + 2) + b

(
yp +

3

2

)
+ c (6.8)

dnew = dold + a+ b (6.9)

In this case, the increment results

∆NE = a+ b = dy − dx (6.10)

In each step, the algorithm decides based on the sign of the decision variable d of the last step.
Then one of the increments ∆E or ∆NE is added. Since the first point of the straight line is set
to (x0, y0), the associated decision variable d is calculated

100

6.1 Lines

F

(
x0 + 1, y0 +

1

2

)
= a(x0 + 1) + b

(
y0 +

1

2

)
+ c

= ax0 + by0 + c+
b

2

= F (x0, y0) + a+
b

2

This turns dstart into:

dstart = a+
a

2
= dy − dx

2
(6.11)

Multiply by a factor of 2 to avoid division

F (x, y) = 2(ax+ by + c) (6.12)

The Bresenham algorithm for lines is thus as follows:

void BresenhamLine(int x0, int y0, int x1, int y1) {

int dx,dy,incE,incNE,d,x,y;

dx = x1 − x0; dy = y1 − y0;
d = 2*dy − dx;
incE = 2*dy;
incNE = 2*(dy − dx);
x = x0; y = y0;
WritePixels(x, y); /* write start pixels */
while (x < x1) {

if (d <= 0) /* choose E */
d += incE;

else {
d += incNE; /* choose NE */
y++;

}
x++;
WritePixels(x, y);

}
}

Fig. 6.4 illustrates the generalization for all quadrants. If |m| > 1 y must be incremented and
a decision made on incrementing x using Bresenham’s criterion. The signs of the increments
differ depending on the quadrant.

101

6 Scan Conversion

Figure 6.4: increments in the Bresenham algorithm related to the respective quadrant

6.2 Circles(Bresenham)

6.2.1 Derivation from implied circle equation

The circle equation can be simply described in implicit form:

F (x, y) = x2 + y2 −R2 = 0 (6.13)

In the following, only the second octant of a circle is considered: x = 0 to x = y = R/
√
2.

The remaining decomposition of the circle follows from considerations of symmetry (see also
Fig. 6.7).

Figure 6.5: Eight symmetrical points on the circle

The procedure is analogous to the midpoint algorithm described by Bresenham for lines. If
pixel P (xp, yp) is found as a pixel, only E or SE can be the next pixel in the 2nd octant of a
circle (see Fig. 6.6).

The implicit formulation is positive outside, zero on and negative inside the circle. If M is inside
the circle, the algorithm chooses E. The increments for the decision variable d are derived as
follows:

dold = F

(
xp + 1, yp −

1

2

)
= (xp + 1)2 +

(
yp −

1

2
)2
)
−R2 (6.14)

102

6.2 Circles(Bresenham)

Figure 6.6: Pixel grid with the points M,E and SE

If dold < 0, the decision goes to E and dnew becomes:

dnew = F

(
xp + 2, yp −

1

2

)
= (xp + 2)2 +

(
yp −

1

2
)2
)
−R2 (6.15)

From (6.14) and (6.15) one finds for the increment ∆E:

∆E = 2xp + 3 (6.16)

However, if dold > 0, the decision falls on SE and one finds analog

dnew = F

(
xp + 2, yp −

3

2

)
= (xp + 2)2 +

(
yp −

3

2
)2
)
−R2 (6.17)

and from this the increment ∆SE

∆SE = 2xp − 2yp + 5 (6.18)

Due to the quadratic circle equation, the increments are no longer constants but depend linearly
on the previous pixel coordinates.

The procedure for drawing a circle is as follows:

1. Step: Draw pixels based on the previously calculated d.

2. step: Calculate new d according to the chosen pixel

The algorithm is initialized by a starting point located at (0, R). The decision variable d is
therefore initialized with (6.14) to the following value.

103

6 Scan Conversion

dstart =
5

4
−R (6.19)

This gives the following algorithm:

void Circle (int radius) {

int x,y;
float d;

/* assume center is in (0,0) */
x = 0;
y = radius;
d = 5/4 − radius;
CirclePoints(x,y); /* write first circle pixels */
while (y > x) {

if (d < 0) /* choose E */
d += 2*x + 3;

else { /* choose SE */
d += 2*(x − y) + 5;
y−−;

}
x++;
CirclePoints(x,y);

}
}

6.2.2 Elimination of real arithmetic

The problem with the algorithm just described is the need for real arithmetic because the ini-
tialization value of d is not an integer. The broken expressions can be eliminated by a simple
program transformation. A new decision variable h is introduced for this purpose

h = d− 1

4
(6.20)

Everywhere in the code, h+ 1/4 is now substituted for d. The initialization for h is now

h = 1−R (6.21)

and the test d < 0 becomes h < −1/4. Since h is initialized with an integer value and only
incremented by integer values (∆E and ∆SE), it can still be tested for h < 0. The algorithm
now only works with integer values. Substituting d for h again, it reads as follows:

void Circle (int radius) {

104

6.2 Circles(Bresenham)

int x,y,d;

/* assume center is in (0,0) */
x = 0;
y = radius;
d = 1 − radius;
CirclePoints(x,y); /* write first circle pixels */
while (y > x) {

if (d < 0) /* choose E */
d += 2*x + 3;

else { /* choose SE */
d += 2*(x − y) + 5;
y−−;

}
x++;
CirclePoints(x,y);

}
}

Figure 6.7: Example of creating a quadrant using symmetry

6.2.3 Improvement by second-order partial differences

So far, the increments for the decision functions were each formed by subtracting the function
values Fnew − Foled. This can be viewed as an approximation of the first derivative of this
function. In the case of the circle, the first-order finite differences are linear functions. (xp, yp)
can be used to calculate the second-order difference. If you choose the point E in the current
iteration, the point moves from (xp, yp) to (xp + 1, yp). The first order difference is calculated
as before ∆Eold

= 2xp+ 3. At the new point it surrenders to

∆Enew = 2(xp + 1) + 3

So for the second-order difference one finds here

105

6 Scan Conversion

∆Enew −∆Eold
= 2 (6.22)

In the same way one finds with the corresponding first-order differences

∆SEold
= 2xp − 2yp + 5

∆SEnew = 2(xp + 1)− 2yp + 5

the second-order difference

∆SEnew −∆SEold
= 2 (6.23)

If the point SE is chosen in the current iteration, the point moves from (xp, yp) to (xp+1, yp−1).
Then arise analogously

∆SEnew = 2(xp + 1) + 3

and thus

∆Enew −∆Eold
= 2 (6.24)

such as

∆SEnew = 2(xp + 1)− 2(yp − 1) + 5

and

∆SEnew −∆SEold
= 4 (6.25)

The algorithm then undergoes the following changes:

1. step: Choose pixel E or SE based on the sign of dold.

2. Step: Increment d with ∆E or ∆SE (current values calculated during the previous itera-
tion).

3. step: Increment the two increments ∆E and ∆SE with constants corresponding to the
newly selected pixel.

4. Step: Draw the selected pixel

∆E and ∆SE are initialized via the start pixel (0, R).

106

6.3 Ellipses

void Circle (int radius) {

int x, y, d, deltaE, deltaSE;

/* assume center is in (0,0) */
x = 0;
y = radius;
d = 1 − radius;
delta E = 3;
deltaSE = −2*radius + 5;
CirclePoints(x, y); /* write first circle pixels */
while (y > x) {

if (d < 0) { /* choose E */
d += deltaE;
deltaE += 2;
deltaSE += 2;

}
else { /* choose SE */

d += deltaSE;
deltaE += 2;
deltaSE += 4;
y−−;

}
x++;
CirclePoints(x, y);

}
}

6.3 Ellipses

Similarly, the Bresenham algorithm can also be generalized to ellipses. To do this, consider the
implicit definition of an ellipse at the origin

F (a, b) = b2x2 + a2y2 − a2b2 = 0 (6.26)

where 2a and 2b are the axis lengths (Fig. 6.8).

Due to the symmetry properties, only the 1st quadrant is considered. This is divided at a point
of slope -1 (tangent at an angle of 45 degrees) (Fig. 6.9). For this, the gradient of the curve is
used, which is perpendicular to the tangent. It can be represented by the unit vectors i and j as
follows.

107

6 Scan Conversion

Figure 6.8: Standard ellipse at origin

∇F (x, y) =
δF

δx
i+

δF

δy
j = 2b2xi+ 2a2yj

The gradient has the slope 1 in the searched point, which means that the two components i and j
of the vector are equal (Fig. 6.9). This results in the following assignment of a point to a region:

a2(yp) > b2(xp)← Region1

a2(yp) < b2(xp)← Region2

To calculate the decision variable d1 in region 1, F is evaluated at the point (xp + 1, yp − 1/2)
(midpoint between E and SE). The partial differences ∆ are calculated as follows:

Figure 6.9: Two regions of an ellipse defined by the 45◦ tangent

Choosing E gives

108

6.3 Ellipses

dold = F

(
xp + 1, yp −

1

2

)
= b2(xp + 1)2 + a2

(
yp −

1

2

)2

− a2b2

dnew = F

(
xp + 2, yp −

1

2

)
= b2(xp + 2)2 + a2

(
yp −

1

2

)2

− a2b2

and thus

∆E = dnew − dold = b2(2xp + 3) (6.27)

On the other hand, if SE is selected, it is found

dnew = F

(
xp + 2, yp −

3

2

)
= b2(xp + 2)2 + a2

(
yp −

3

2

)2

− a2b2

and thus

∆SE = b2(2xp + 3) + a2(−2yp + 2) (6.28)

In region 2, the decision variable d2 is calculated at the point (xp + 1/2, yp − 1) (midpoint be-
tween S and SE). The increments are calculated in the same way as for region 1. The results
can be found in the following program code.

The initialization is done assuming that a and b are integers and the starting point is given by
(0, b). The first center point to be calculated becomes (1, b− 1/2). The decision function takes
the initial value there

F

(
1, b− 1

2

)
= b2 + a2

(
b− 1

2

)2

− a2b2 = b2 + a2
(
−b+ 1

4

)
(6.29)

on.

In each iteration step it must be checked whether region 1 has been left. If so, the decision
variable d2 must be initialized with (xp + 1/2, yp − 1), where (xp, yp) denotes the last point in
region 1.

The algorithm ends at y = 0.

The following program code shows the scan conversion algorithm for ellipses using real arith-
metic and first-order differences. In the case of integer a and b, real arithmetic can again be
circumvented by a program transformation similar to that for circles (see 6.2.2). Furthermore,
instead of the direct calculation of the increments, a calculation using second-order differences
could also take place.

109

6 Scan Conversion

void ellipse(int a, int b) {

int x,y;
float d1,d2;

/* Assume the center of the ellipse is in (0,0) */
x = 0; y = b;
d1 = b*ba*a*b+a*a/4;
EllipsePoints(x,y); /* write first ellipse pixels */
while (a*a*(y−0.5) > b*b*(x+1)) { /* region 1 */

if (d1 < 0) /* choose E */
d1 += b*b*(2*x + 3);

else { /* choose SE */
d1 += b*b*(2*x + 3) + a*a*(−2*y + 2);
y−−;

}
x++;
EllipsePoints(x, y);

}

d2 = b*b*(x + 0.5)*(x + 0.5) + a*a*(y − 1)*(y − 1) − a*a*b*b;
while (y > 0) { /* region 2 */

if (d2 < 0) { /* choose SE */
d2 += b*b*(2*x + 2) + a*a*(−2*y + 3);
x++;

}
else /* choose S */

d2 += a*a*(−2*y + 3);
y−−;
EllipsePoints(x,y);

}
}

6.4 Scan conversion of polygons

Scan conversion of polygons is done by filling the primitive with pixels as efficiently as possi-
ble. The simplest way is to determine for each pixel whether it is inside the polygon and set it if
so (inside tests). Of course, this is too inefficient, so people are looking for faster methods. Scan
conversion of polygons is an elementary functionality included in modern graphics hardware
systems.

First the concept of the span is introduced and only the binary case is considered. A span is
an area of set pixels within a scan line (pixel line). The spatial coherence of the scan line is

110

6.4 Scan conversion of polygons

exploited by spans. Transitions between set and unset pixels can only occur at the intersections
of the polygon edge with the scan line. In the example in Fig. 6.10, the scan line 8 intersects
the polygon four times in a, b, c and d. There are 2 spans from 2 to 4 and from 9 to 13.

Figure 6.10: polygon and scan line

For this reason, the well-known scan conversion algorithms for lines (Bresenham) can be used
to calculate the intersection points of each polygon edge with the scan line - i.e. the extrema of
the resulting spans

Figure 6.11: Span of a polygon: extrema are shown in black, inner points are grey:
a) Extrema calculated with midpoint algorithm (Bresenheam)
b) extrema within the polygon

However, this can lead to incorrect results at polygon corners, since the line algorithm selects
the pixels that are closest to the line, regardless of which side of the line they are on (Fig. 6.11
(a)). The algorithm has to be modified to find the correct extrema inside the polygon as in
figure (b). Otherwise, the current polygon’s region would overlap with regions of immediately
adjacent polygons.

111

6 Scan Conversion

6.4.1 A three-step algorithm

I. Step: Calculate the intersection points of all polygon edges with the scan line

II. Step: Sort the intersection points by increasing x-coordinates and number them starting at
0.

III. Step: Fill the spans between two consecutive intersections, provided the number of the
intersection has parity odd (odd). Outside the polygon, the parity is even (even) and is
inverted at each intersection.

This algorithm has the following problems:

a. Treatment of the edge pixels at any (real) intersection between two integer coordinates.
Which pixels are inside the polygon?

b. Handling of integer intersections (intersections whose coordinates take integer values). Are
they inside or outside the polygon?

c. Treatment of common vertices of two intersecting lines

d. Handling of horizontal edges in integer case

To solve the problems described, the following procedure is suggested:

a. If you approach an intersection from the left and are inside the polygon, you will be rounded
off. If you are outside, round up.

b. If the first pixel from the left of a span is an integer intersection then the pixel is set, otherwise
not.

c. Only the vertex with the smaller y-coordinate of an edge is included in the parity calculation.
Thus the lines are open at their ymax endpoints. In the example in Fig. 6.10, this looks like
this:

• In scan-line 3, A counts only once because A is the ymax vertex of AB and the ymin
vertex of FA;

• In scan-line 1 vertex B counts twice because it is ymin vertex of AB and BC (zero span,
only one pixel drawn)

• in Scan-line 9, however, F is not set because F is twice the ymax vertex.

d. Pixels are placed on the lower horizontal edges, but not on the upper ones. This is done
automatically if the vertices are not included in the parity calculation.

6.4.2 Horizontal edges

The vertices of horizontal edges are not counted in the integer case. With the ymin criterion for
parity calculation, this means that lower edges are recorded, but upper ones are not.

That horizontal edges are treated correctly can be shown using the different cases in the example

112

6.4 Scan conversion of polygons

in Fig. 6.12:

Edge AB: vertex A is for edge YES ymin vertex and AB is not counted.
Therefore the parity is odd, and the edge is drawn as a span
to B. This is the ymin vertex for BC, which makes the
parity even again.

Edge CD: The span starts at IJ and the vertices of CD are not
counted. Therefore the parity remains odd and the edge is
drawn to DE where the parity becomes even again.

Edge IH: I is ymax vertex of IJ and IH is not counted. This leaves
the parity even and the edge is not drawn.

Edge GF : G is ymax vertex of HG and GF is not counted. This keeps
the parity even and the edge is not drawn.

Figure 6.12: Horizontal edges in a polygon

6.4.3 Problems with long thin polygons (slivers)

By the above rules, only pixels inside or on lower left edges are drawn. This creates so-called
slivers. These are places where the polygon area is so thin that the interior does not have a span
on each scan line that results in a pixel being drawn. This can lead to aliasing effects. The
gradation is clearly recognizable.

6.4.4 Edge coherence

Calculating the intersections of all edges with each scan line is very time consuming. Given
the intersection xi for an edge with the scan line i, the intersection with the line i + 1 can be
calculated incrementally:

113

6 Scan Conversion

Figure 6.13: Scan conversion of Silvers

xi+1 = xi +
1

m
, where m =

(ymax − ymin)

(xmax − xmin)
(6.30)

Consider left edges with a slope m > 1:

• A pixel is set in the bottom left corner (xmin, ymin) (x-start).

• Incrementing y by 1 (new scanline) increases x-start for that scanline by a constant frac-
tion of 1/m. As a result, x now has an integer and a fractional part.

• As soon as the fractional part becomes > 1, x-Start for the current scan line can be incre-
mented and the fractional part decremented by 1.

To avoid real arithmetic, m is divided into numerator and denominator (integer values). The
fractional portion now overflows when the numerator is greater than the denominator. This
gives the following algorithm for scan conversion of a left polygon edge.

void LeftEdgeScan(int xmin, int ymin, int xmax, int ymax) {

int x, y, num, denom, inc;

x = xmin;
num = xmax − xmin;
denom = ymax − ymin;
inc = denom;

for (y = ymin; y <= ymax; y++) {
WritePixels(x,y);
inc += number;
if (inc > denom) { /* Overflow, so round up */

x++;

114

6.4 Scan conversion of polygons

inc −= denom;
}

}
}

The treatment of right edges and other slopes is done with similar, albeit slightly more tricky,
arguments. Vertical edges are a special case. Horizontal edges are implicitly handled by the
span rules, as shown above.

6.4.5 The Active Edge Table data structure (AET)

The AET contains all edges that intersect the scan line, sorted in ascending order according to
the x coordinates of the intersection points. From this, the extrema defining a span can be easily
determined and the span can be drawn. The AET is updated for each new scan line. To do this,
the edges that no longer intersect the new scan line (y = ymax) are eliminated and new ones
(y = ymin + 1) are inserted. The x coordinates of the intersections of all remaining edges are
updated.

In order to access and update the AET efficiently, a global Edge Table (ET) is created at the
beginning, which contains all edges sorted in ascending order according to their smaller y coor-
dinate (ymin) . It is constructed using bucket sorting (separate hashing), with the list containing
as many buckets as scan lines.

Figure 6.14: ET for the example polygon from Fig. 6.10

In each bucket are held all edges whose ymin coordinates correspond to the corresponding
bucket, sorted in ascending order by their xmin coordinate (x coordinate of their lower end-

115

6 Scan Conversion

point). Each entry contains the ymax coordinate for the edge, the xmin coordinate and the incre-
ment of x for the transition to the next scan line (1/m).

Figure 6.15: AET for scan lines 9 and 10 from Fig. 6.10

The algorithm can thus be described as follows:

I. Generate ET by sorting all edges by ymin coordinate and concatenating by increasing xmin

coordinate

II. Search for first y value (scan line) containing items

III. Initialize AET to empty state

IV. Repeat until AET and ET are empty:

.1 Move all items with y = ymin from ET to AET , preserving the sorting by xmin

.2 Eliminate from AET all items with y = ymax

.3 Draw all spans of scan line y using x coordinate pairs from AET

.4 Increase y by 1 (next scan-line)

.5 Increment the x coordinate in the item for each non-vertical edge of the AET

.6 Reorder the AET by increasing x coordinates

It should be noted that in step 4.6 the AET must be sorted again. However, since in general
only little has changed compared to the last step, special sorting methods (insertion, bubble) of
complexity O(N) can be used in this case.

In the case of multiple polygons, the spans are overlaid (accumulated).

When using Gouraud shading (see Chapter 8) within a span, the intensities
between two extremes are interpolated. In this case, the AET and
ET can be supplemented accordingly with intensity increments.

116

7

Hidden Line and Hidden Surface
Algorithms

The efficient calculation of hidden lines and areas is of essential importance in graphic data
processing, because the order in which lines, polygons or polygon parts are drawn depends on
the current overlap and the viewer’s point of view. Only ray tracing (see Chapter 10) deals
with this problem implicitly by setting the intersection point with the smallest distance in the z
direction to the viewer for opaque objects (Z buffering).
In the following chapter, the most important algorithms will be examined in more detail.

7.1 Hidden Line Algorithms

7.1.1 Back Face Culling

In the case of polygonal object descriptions, the individual polygons enclose the entire object
volume. If the normal is defined as outward, then the polygons whose normals point away from
the viewer are in a non-visible area (back-facing polygons).

The test is carried out using the sign of the scalar product from the normal N and the projection
direction R. For orthographic projections into the xy plane, R = (0, 0,−1), so the sign of the z
coordinate of the normal is crucial. If only one object is to be drawn, this test is sufficient.

Since a projection ray in the case of polyhedron objects always cuts exactly as many front-
facing as back-facing polygons, the number of polygons to be examined (converted) is reduced

7 Hidden Line and Hidden Surface Algorithms

Figure 7.1: Illustration of back face culling:
grey: Back-facing polygons

black: Front-facing polygons

by a factor of 2 on average. This knowledge is also often used as a preprocessing step, which
can be done with hardware support.

7.1.2 Appel’s algorithm

A typical algorithm based on back-face culling is the Appel method. Only edges of front-facing
polygons are considered. A prerequisite for the algorithm is that edges can be combined into
polygons. The further propagation of visibility information of an edge at intersections with
other edges (edge coherence) is helpful for the process.

A quantitative invisibility is introduced for points on a polygon edge. If a line goes behind
a front-facing polygon, its quantitative invisibility is incremented, if it comes out again, it is
decremented. Only points whose invisibility is 0 are visible. The line AB in Fig. 7.2 is divided
into individual segments. As long as no penetrating polygons are allowed, the invisibility of
a line only changes if it goes behind so-called contour lines. A contour line is either an edge
shared by a front-facing and a back-facing polygon, or an edge of a front-facing polygon that is
not part of a closed polyhedron. In Fig. 7.2, the edges AB, CD, DF and KL are contour lines,
while CE , EF and JK are none.

A contour line runs in front of an edge if it pierces the eyepoint-polygon edge triangle.

The intersection of the contour line with the edge (projection onto
the edge) can be calculated by clipping the edge on the plane of
eye point and contour line.

This results in the following algorithm:

118

7.1 Hidden Line Algorithms

Figure 7.2: Quantitative invisibility of lines

Figure 7.3: Contour line runs in front of the polygon edge

1. Pick an initial edge vertex on an arbitrary polygon (of an object), where the edge is sensibly
a common edge of a front- and a back-facing polygon.

2. Determine the initial value for the invisibility by brute-force testing against all front-facing
polygons in front of it.

3. This starting value is propagated for all edges that start from this vertex.

4. As soon as an edge passes a contour line, the invisibility value is incremented or decre-
mented.

119

7 Hidden Line and Hidden Surface Algorithms

5. The areas of an edge that have the invisibility value 0 are drawn.

6. If the second vertex of an edge is reached, the current value of the invisibility is set as the
starting value for all further edges that start from this point (propagation of the quantitative
invisibility by exploiting the edge coherence).

When propagating invisibility at vertices intersected by a contour line, a special case needs to be
considered: edges emanating from such vertices may be obscured by one or more front-facing
polygons that share that vertex. For example, in Fig. 7.2 the edge KL has the invisibility 1
because it is covered by the upper object polygon. However, the corner point K is set to 0
by the edge KJ . Therefore each new edge must be tested against all front-facing polygons
containing such a vertex (modification of the initial value).

7.2 Hidden Surface Algorithms

7.2.1 Z buffering

The simplest, but at the same time the most important hidden surface algorithm is Z-Buffering.
In addition to the frame buffer (image memory) for recording the color, transparency and tex-
ture of each pixel, there is the so-called z-buffer, in which the depth values (distance from the
observer) of each pixel are stored during scan conversion. All that is needed is additional depth
in the screen memory, for example 16 or 24 additional bits per pixel.

The algorithm is then as follows:

1. Set the initial z value of all pixels to the maximum distance value R – in the case of the
links system with increasing z coordinate for increasing distance, this corresponds to the
rear clipping plane – and the color to background.

2. Scan-convert all polygons of the scene in any order. When scan converting a polygon pixel,
if the current z value is less than the current value in the z-buffer, replace the values (color
and z value) with those of the current pixel.

In this way, the color value of the polygon closest to the viewer is kept in the frame buffer. The
complexity of the algorithm is thus only linear to the number of polygons.

The method performs a depth sorting of the pixel values. Only one comparison is required per
decision. The resolution of the depth values and thus the quality of the algorithm depends on
the memory depth of the Z buffer.

Figure 7.4 shows an example of how the Z-buffer algorithm works. Color values of the poly-
gons are represented by gray values, while numbers represent the corresponding depth values.
In step (a) a polygon with constant z value is inserted into an empty frame and Z buffer. In step
(b) another polygon is then drawn, which penetrates the first one.

The calculation of a z value can be simplified using depth coherence. Usually, to find the z

120

7.2 Hidden Surface Algorithms

Figure 7.4: Example of how the Z-buffer works

value of the polygon at a location (x, y), the plane equation Ax+ By + Cz +D = 0 has to be
solved for z.

z =
−D − Ax−By

C
(7.1)

Calculating the z value of each point on a scanline can now be simplified and done by incre-
ments, given that a polygon is planar. Suppose at the point (x, y) evaluate (7.1) to z1. As a
result, one now finds (x+∆x, y) for z at the position

z = z1 −
A

C
∆x (7.2)

To calculate (x+1, y) given z(x, y) only one subtraction is necessary because the quotient A/C
is constant and ∆x = 1. Similarly, for the transition to the next scan line, the first z value is
obtained by subtracting B/C for each ∆y.

If the polygon is not planar or not defined, Gouraud interpolation (see Chapter 8) can also be
used.

Shading only needs to be calculated for visible polygons.

Z-Buffering is the most important hidden surface algorithm. It is
often implemented in hardware. The limited depth resolution (image
precision) can lead to aliasing effects. Furthermore, clipping on
the z front and back plane can also be handled with the z buffer.

121

7 Hidden Line and Hidden Surface Algorithms

Figure 7.5: Interpolation of z values by incrementing

7.2.2 Depth sorting (Newell-Newell-Sancha)

Depending on the complexity of the scene, a priority list can also suffice to draw the polygons
in the correct order. If polygons only partially cover each other in the z direction, i.e. do not
overlap each other, it is sufficient to apply a simple z sorting and then draw in this order (Fig. 7.6
image (a)).

Figure 7.6: Different situations for the spatial arrangement of polygons

If the polygons interpenetrate or overlap cyclically, no clear sequence can be identified. (Fig. 7.6
(b) and (c)). In this case the polygon must be split.

Conceptually, the following three steps must be carried out:

• Sort all polygons by their smallest z coordinate.

• For each polygon: Solve all ambiguities arising from overlaps in z-direction.

• Scan-convert all polygons according to the updated list (i.e. back-to-front).

If the polygons are in z = const. planes, there can be no overlap and the 2nd step can be ig-
nored. This leads to a simplified form of depth sorting, the so-called Painter’s Algorithm, which

122

7.2 Hidden Surface Algorithms

is mainly used in 21
2
D situations such as window managers.

But how can ambiguities be resolved? After pre-sorting the polygons, polygon P is at the end
of the list and thus furthest from the viewer. Assuming a legal system, this polygon P has the
smallest zmin coordinate. Before P can be drawn, all other polygons Q in the list must be tested
to see if they are covered by P . If this is not the case, P can be drawn.

The following six tests of increasing complexity are therefore carried out for each polygon Q in
the list. Once a test condition is met, Q is uncovered by P and the next polygon Q is tested. If
all polygons Q pass the tests, P is drawn and the next polygon Q in the list becomes the new P .

For all polygons Q in the list:

1. Do the z extents of P and Q(Pzmax > Qzmin
overlap? If not, done.

2. Do the extents in the x direction overlap? If not, done.

3. Do the extents in the y direction overlap? If not, done.

4. Is P entirely on the opposite side of the plane through Q from the viewer? If so, done.

Figure 7.7: Test 4 is fulfilled

5. Is Q completely on the same side as the viewer with respect to the level through P ? If so,
done.

Figure 7.8: Test 4 is not fulfilled, test 5 is fulfilled

123

7 Hidden Line and Hidden Surface Algorithms

6. Do the projections of the polygons overlap in the xy plane (testing all edges against all)? If
not, done.

If all tests fail, then Q is obscured by P and it must be checked whether Q can be scan-converted
before P . To do this, swap P and Q and repeat tests 4 and 5:

4’. Is Q completely on the other side than the viewer with respect to the level through P ? If
so, done.

4’. Is P completely on the same side as the viewer with respect to the level through Q ? If so,
done.

If again an attempt is made to swap P and Q, then there is a cyclic overlap. If this is the case,
follow steps 7 and 8:

7. Split P into two partial polygons at the plane through Q, delete P from the list and include
the new polygons (can be done using Sutherland-Hodgeman clipping, for example).

7. Repeat the tests with the new list.

The procedure for tests 4 and 5 is explained using the example in Fig. 7.9. The point is to decide
whether polygons Q1 and Q2 lie entirely on one side of the area defined by polygon P . The
three orthographic projections in Figures (a) - (c) are not able to provide any information about
this.

The polygon vertices are with

P : (1, 1, 1) (4, 5, 2) (5, 2, 5)

Q1 : (2, 2, 0.5) (3, 3, 1.75) (6, 1, 0.5)

Q2 : (0.5, 2, 5.5) (2, 5, 3) (4, 4, 5)

given.

For the plane equation of the plane defined by the polygon P, one finds

15x− 8y − 13z + 6 = 0

The test function (implicit form) is then

v = 15x− 8y − 13z + 6

Inserting the 3 corners of Q1 results in:

124

7.2 Hidden Surface Algorithms

Figure 7.9: Example of deciding tests 4 and 5

v1 = 15 · 2− 8 · 2− 13 · 0.5 + 6 = 13.5 > 0

v2 = 15× 3− 8× 3− 13× 1.75 + 6 = 4.25 > 0

v2 = 15× 6− 8× 1− 13× 0.5 + 6 = 81.5 > 0

Since the signs are all positive, Q1 lies entirely in one of the half-planes defined by P . For Q2

one finds analogously:

v4 = 15 · 0.5− 8 · 2− 13 · 5.5 + 6 = −74 > 0

v5 = 15 · 2− 8 · 5− 13 · 3 + 6 = −43 > 0

v6 = 15 · 4− 8 · 4− 13 · 5 + 6 = −31 > 0

The consistently negative signs of the test function show that Q2 is completely in the other
half-plane. If the observer is far away on the positive z-axis in Fig. 7.9 (d), then Q1 lies in the

125

7 Hidden Line and Hidden Surface Algorithms

hemiplane facing away from the observer and is thus partially covered by P . It is also evident
that Q2 lies in the same half-plane as the observer and thus partially covers P .

7.2.3 BSP trees

In the sorting algorithm, the problem of visibility was previously solved dynamically and must
therefore be recalculated for each change in the viewer’s location, even in the case of a static
scene. This is too expensive for real-time applications such as flight simulation. An elegant and
efficient method that does not have this disadvantage is the Binary Space Partitioning Tree.

The idea of the BSP tree is to subdivide the scene into polygon clusters using dividing planes.
If the observer is in the same half-plane as a cluster, the cluster can occlude others, but cannot
occlude itself.

Figure 7.10: Clustering of a polygon scene and associated BSP tree

Each cluster is subdivided as long as dividing planes can be found. It is represented by a binary
tree whose nodes contain the dividing planes and whose leaves represent the resulting regions
in space.

The viewer’s point of view is determined by a top-down traversal of the tree and comparisons
with the plane equations in the respective nodes.

This scheme can be extended to the polygon level. First, a root polygon is selected whose
plane splits the remaining polygons into two half-spaces. Polygons that intersect the parting
plane are further split. New root polygons are selected in each of the two resulting half-spaces.
These should cause as few splittings as possible. This is done recursively until there is only one
polygon per sheet.

Fig. 7.11 (a)-(d) shows an example of building a BSP tree. Figure (a) shows a top view of the

126

7.2 Hidden Surface Algorithms

scene before the recursion is complete, with polygon 3 as the root polygon. Fig. (b) shows the
BSP tree after recursion for the left subtree while Fig. (c) shows the complete tree. Finally,
figure (d) shows an alternative tree with polygon 5 as the root polygon.

The tree is traversed to generate the correct order for scan conversion. With regard to a root
polygon (node) in the tree, the following order applies:

1. Scanconvert the polygons that are in the opposite half-space from the viewer (because they
may be covered by the current root polygon).

2. scanconvert the root polygon.

3. Scanconvert all polygons that are in the same half-space as the viewer.

Since the scheme can be applied recursively to each node of the tree, the polygon list sought is
obtained by successively applying the above rule to all nodes in the tree.

Figure 7.12 shows an example of the scan conversion order of the same scene for different
observer locations. The projection lines are represented by thin lines, while white numbers in
black circles indicate the order of drawing the corresponding polygons.

The following code illustrates the construction and traversal of the tree:

typedef struct BSP_tree {
polygon root;
struct BSP_tree *backChild;
struct BSP_tree *frontChild;

} BSP_Tree;

BSP_Tree* BSP_makeTree(listOfPolygons polyList); {

polygon root;
listOfPolygons backList, frontList;
polygon p, backPart, frontPart;

/* we assume each polygon is convex */
if ("polyList is empty")

return NIL;
else {

root = BSP_selectAndRemovePoly(polyList);
backList = NIL; frontList = NIL;
for ("each remaining polygon p in polyList") {

if ("polygon p in front of root")
BSP_addToList(p, frontList);

else
if ("polygon p in back of root")

BSP_addToList(p, backList);

127

7 Hidden Line and Hidden Surface Algorithms

else {
/* polygon p must be split */
BSP_splitPoly(p, root, &frontPart, &backPart);
BSP_addToList(frontPart, frontList);
BSP_addToList(backPart, backList);

}
}
return BSP_combineTree(BSP_makeTree(frontList),

root, BSP_makeTree(backList));
}

}
BSP_Tree* BSP_displayTree(BSP_Tree *tree) {

if ("tree is not empty")
if ("viewer is in front of root") {

BSP_displayTree(tree−>backChild);
displayPolygon(tree−>root);
BSP_displayTree(tree−>frontChild);

}
else {

BSP_displayTree(tree−>frontChild);
displayPolygon(tree−>root);
BSP_displayTree(tree−>backChild);

}
}

The tree only needs to be generated once for static scenes. The
number of splitting operations, which depends on the choice of the
root polygon, is decisive for the computational effort.

7.2.4 Warnock’s Algorithm

The divide and conquer strategy of the BSP tree was carried out in object space. Similar ap-
proaches can also be formulated for the image plane. The image plane is broken down re-
cursively into a quadtree, whereby the following 4 cases can occur in a cell created by the
breakdown:

1. Polygon contains cell

2. Polygon intersects cell

3. cell contains polygon

4. Polygon outside the cell

Case 4 does not affect the cell. In case 2, the polygon can be split into sub-polygons, which can
be treated using case 3 and case 4. In the following cases, the decision for a cell can be made
directly, so that no further subdivision is necessary:

128

7.2 Hidden Surface Algorithms

1. The cell does not contain a polygon→ Background color

2. Just an intersecting or contained polygon→ First fill cell with background, then scan-convert
polygon

3. Just a bounding polygon (case 1)→ Fill cell with polygon color

4. There are multiple polygons affecting the cell, but there is a bounding polygon that is closer
to the viewer than all other→ fill cells with the color of that bounding polygon

Cases 1-3 are easy to understand. Fig. 7.13 illustrates the fourth case. The test of whether a
closer, bounding polygon exists is done by determining the z coordinates of the cell’s vertices
projected onto the polygon plane. If one finds a surrounding polygon whose four z coordinates
determined in this way are larger (legal system) than the z coordinates of all other surrounding,
intersecting or contained polygons, then the criterion of case 4 is fulfilled (Fig. 7.13 (a) ful-
filled, in contrast to Fig. 7.13 (b)).

If the cell cannot be assigned to any of the four cases, it is subdivided into four cells for which
the same tests are run again. The recursion is aborted as soon as the size of the cells corresponds
to the pixel resolution. In such a case, the visibility is determined by z-buffering.

Fig. 7.14 shows the subdivision in the Warnock algorithm using a simple scene as an example.
The number in the cells corresponds to the number of one of the cases 1 - 4. For cells without
numbers, none of the cases apply.

As an alternative to subdivision into square cells, it can also be divided into rectangular areas. It
is divided around a polygon corner point in order to avoid unnecessary subdivisions in the cell.
Fig. 7.15 shows this case for the same scene as in Fig. 7.14. First it is divided around the corner
point A, in the next step around the corner point B.

To handle case 2, polygon clipping algorithms are required for the rectangular cells. Prepro-
cessing by backface culling and 3D clipping is also essential.

7.2.5 Weiler-Atherton Algorithm

Another variant is to carry out the subdivision along polygon boundaries, although a powerful
clipping algorithm for concave polygons must be available. The algorithm first performs a Z
sorting of the polygons. The polygon closest to the viewer is selected as the clipping polygon
and all others are clipped to it. This results in a splitting of the polygons into an inside and an
outside part polygon.

Two lists are built, an Inside list and an Outside list. The partial polygons in the inside list that
are completely behind the clipping polygon can be deleted. The other polygons in the Inside list
are processed recursively in the same way: The partial polygon in the Inside list that is closest to
the viewer becomes the new clipping polygon to which all other polygons in the list are clipped.
When the recursion is complete, the current Inside list is scan-converted and then the Outside

129

7 Hidden Line and Hidden Surface Algorithms

list is treated in the same way.

The original polygon is always clipped because it is less expensive than clipping against one or
more parts of it. It is therefore necessary to have references from the subpolygons back to the
original.

The clipping polygons are managed within the recursion using a stack. The stack always con-
tains polygons that are needed as clipping polygons but are not the current clipping polygon due
to recursive subdivision. Cyclic overlaps can be detected using the stack: If a partial polygon is
found that is in front of the current clipping polygon, the stack is searched for. If it is present, no
further recursion is necessary because all polygon parts that lie inside and behind the clipping
polygon have already been eliminated.

Fig. 7.16 illustrates the Weiler-Atherton algorithm. The current clipping polygon is identified
by a bold outline. Polygons that have already been scan converted appear gray. The numbers in
Fig. (a) denote the z-coordinates of the respective vertices.

The flow of the algorithm for this example is as follows:

1. First, A is selected as the clipping polygon: The resulting Inside list is
{BinA,DinA,CinA,A} , the outside list is {BoutA,DoutA,CoutA}.

2. BinA and DinA can be deleted from the list because Ais closer to the viewer.

3. CinA is closer, so subdivide recursively and clip the remaining inside list against C. An
inside list of {AinC,CinA} and an outside list of {AoutC} are created.

4. AinC is after C, so it will be deleted. It remains CinA to be drawn.

5. Before returning from the recursion, the element of the outside list AoutC can be drawn,
since it corresponds to the remaining inside element of the next higher level.

6. After the return, the Outside list is processed. B now becomes a clipping polygon and creates
an inside list of {BoutA,CoutAinB} and an outside list of {CoutAoutB,DoutA}.

7. CoutAinB is deleted because it is behind B. So only BoutA remains in the Inside list and is
drawn.

8. After returning again, the remaining Outside-list is processed and CoutAoutB and DoutA are
drawn.

The algorithm can be used in the same form as the Warnock algorithm.

The following pseudocode illustrates the recursion:

WA_visibleSurface(void)
{

listOfPolygons *tempList=0;
polyList = list of copies of all polygons;

130

7.2 Hidden Surface Algorithms

/* sort polyList by descending z−max of vertices */
sortPolyList(polyList);

/* Delete stack */
deleteStack();

/* process each remaining polygon region */
while (polyList)

WA_subdivide(polyList−>firstElement, &polyList);
}

WA_subdivide(polygon clipPolygon, listOfPolygons **polyList) {

listOfPolygons *inList=0;
listOfPolygons *outList=0;
listOfPolygons *tempList=0;
polygon *poly;

for (tempList=*polyList; tempList; tempList=tempList−>next)
/* Clip the polygon tempList to clipPolygon
Hang pieces inside in the inList,
Subpolygons outside in the outList. */
clipPolygonAndAppendToList(tempList, clipPolygon,

&inList, &outList);

/* delete subpolygons behind clipPolygon
insideList */
deletePiecesBehindClipPolygon(clipPolygon, &inList);

/* recursively process the misordered ones
fragments */
for (all polygons poly from inList that are not on the stack

lie and are not part of the clipPolygon) {
pushPolygonOnStack(clipPolygon);
WA_subdivide(poly, &inList);
popStack();

}

/* Display the rest of the polygons inside the clipPolygon */
for (all polygons poly in inList)

displayPolygon(poly);

*polyList = outList;
}

131

7 Hidden Line and Hidden Surface Algorithms

Figure 7.11: Examples for building BSP trees132

7.2 Hidden Surface Algorithms

Figure 7.12: BSP tree traversal and resulting scan conversion order for two different projections of the
same scene

Figure 7.13: Illustration of case 4 for deciding whether a further subdivision is necessary for quadtree
methods

133

7 Hidden Line and Hidden Surface Algorithms

Figure 7.14: Subdivision into square cells

134

7.2 Hidden Surface Algorithms

Figure 7.15: Subdivision around the polygon vertices marked with circles

135

7 Hidden Line and Hidden Surface Algorithms

Figure 7.16: Examples for the Weiler-Atherton algorithm
(a) original scene
(b) Polygons clipped to A
(c) inside list of A clipped to C
(d) visible parts within A
(e) Polygons clipped to B
(f) All visible parts of the scene

136

8

Lighting, Shading and Texturing

8.1 Lighting

8.1.1 Ambient Light

Ambient light is created by the self-emissions of an object (hi) or by the global illumination of
a large number of diffuse sources in the area (Ia). In the monochrome case:

I = hi + Iaka (8.1)

hi own emission coefficient

ka ambient reflection coefficient

Ia intensity of the ambient light

I resulting intensity

The self-emission coefficient hi is no longer included explicitly in all subsequent formulations
of the lighting model. The self-emission share is assumed to be included in the ambient reflec-
tion coefficient.

8 Lighting, Shading and Texturing

8.1.2 Diffuse Reflection

Assuming a point light source that illuminates the object, Lambert’s law of reflection is valid
for matte surfaces:

Figure 8.1: Diffuse reflection

Lambertian surfaces appear equally bright from any viewing angle because they reflect light
with equal intensity in all directions. This means that the intensity only depends on the geo-
metric relationships between the light source and the surface, but not on the observer’s location.
The following applies:

I = Ipkd cos θ (8.2)

Ip light source intensity

kd diffuse reflection coefficient

θ Angle between surface normal N and
light source vector L with θ ∈ [0, π/2]

If the vectors are normalized, the following notation can be used with the help of the scalar
product:

I = Ipkd(N · L) (8.3)

If the point of light is at infinity, the angle θ is constant for surfaces of the same normal, and a
directed light source is obtained.

Combining the ambient (8.1) and the diffuse model (8.3) results in:

I = Iaka + Ipkd(N · L) (8.4)

8.1.3 Attenuation

Due to the solid angle radiation of a light source, the luminous flux that arrives on a surface
element dA is inversely proportional to the square of its distance from the light source: 1/d2L.

138

8.1 Lighting

Figure 8.2: Diffuse reflection: Ratio between incident and reflected light intensity depending on the size
of the radiating comparison to the reflecting surface dA/(dA/cos θ)

Therefore one can introduce an attenuation factor fatt.

fatt =
1

d2L
(8.5)

Due to the rapid drop from 1/d2L for dL →∞, fatt also often becomes

fatt = min

(
1

c1 + c2dL + c3d2L
, 1

)
(8.6)

where c1, c2 and c3 are user-defined constants that describe the properties of a light source.

This expands the lighting model by the factor fatt to:

I = Iaka + fattIpkd(N · L) (8.7)

8.1.4 Colors

So far, only monochrome relationships have been considered. It makes sense to consider equa-
tion (8.7) as a function of the wavelength λ.

Iλ = IaλkaOdλ + fattIpλkdOdλ(N · L) (8.8)

Here, Odλ denotes the value of the spectrum of the object color at the point λ. Usually, the
lighting equation is only solved at a few spectral points (e.g. for R, G, B).

139

8 Lighting, Shading and Texturing

This restriction can lead to aliasing effects (see following
chapter).

8.1.5 Depth Cueing

The admixture of atmospheric white that occurs with increasing distance from the observer to
the object can be modeled using a linearized approach. You get Iλ from the previous intensity
by adding the atmosphere color Idcλ (depth cue):

Iλ = s0Iλ + (1− s0)Idcλ (8.9)

where s0 is a scaling factor for interpolation between the original and depth cueing color, which
is calculated from the z-coordinate of object z0 as follows:

s0 = sb +
(z0 − zb)(sf − sb)

zf − tb
for zb ≤ z0 ≤ zf (8.10)

Figure 8.3: Sigmoids for calculating the attenuation

Fig. 8.3 illustrates the meaning of sf and sb (minimum and maximum addition of the atmo-
sphere color) as well as zf and zb (linear interpolation interval).

In the further development of the illumination model, the attenuation terms are not included for
the sake of clarity.

8.1.6 Specular Reflection (Directional Reflection)

In the ideal case of the reflective surface, the angle of reflection is also given by the law of
reflection with the angle of incidence θ.

140

8.1 Lighting

Figure 8.4: Vectors and angles in specular reflection: vector to light source L, surface normal N, reflec-
tion vector R, vector to viewer V

Figure 8.5: Calculation of the reflection vector

R is calculated by reflecting L on N (Fig. 8.5).

With normalized N and L the following applies:

R = N · cosθ + S (8.11)

With |S| = sinθ and S = N · cosθ − L follows

R = 2N · cosθ − L = 2N(N · L)− L (8.12)

The angle α between the reflection and observer vector results from

cosα = R ·V = (2N(N · L)− L) ·V (8.13)

8.1.7 Phong’s lighting model

Typically, the ideally reflecting case occurs only very rarely in reality, so that the lighting equa-
tion must have a reflecting part that depends on the angle α in addition to all previous com-
ponents. It is assumed that the maximum specular reflection occurs for α = 0 (Fig. 8.4) and

141

8 Lighting, Shading and Texturing

then decreases at different rates for increasing angles. This behavior can be modeled using the
cosn(α) function. This gives Phong’s illumination model:

Iλ = IaλkaOdλ + fattIpλ[kdOdλcosθ +W (θ)(cos alpha)n] (8.14)

Here, W (θ) denotes the fraction of the specularly reflected light and n denotes a material con-
stant, the specular reflection exponent. The exponent n decides the shape of the highlight on the
surface. A value of 1 produces a broad, tapering highlight, while higher values produce sharp,
focused highlights (Fig. 8.6). For the ideal reflector, n would be infinite.

Figure 8.6: Characteristics of the cosnα function for different n

A constant value between 0 and 1 is often assumed for W (θ), the so-called specular reflection
coefficient ks. With this, and replacing the cosine terms with the corresponding scalar products,
we get

Iλ = IaλkaOdλ + fattIpλ[kdOdλ(N · L) + ks(R ·V)n] (8.15)

The effects of the ratio of kd/ks on the surface propagation picture are shown for different n in
the following picture.

In equation (8.15) the specular part is independent of material properties such as color. How-
ever, it turns out that the specular reflection is influenced by the surface properties. It generally
has different specular reflection properties than diffuse reflection. Therefore, Phong’s illumina-
tion model can be extended by the specular color Osλ , and one gets:

Iλ = IaλkaOdλ + fattIpλ[kdOdλ(N · L) + ks(R ·V)n] (8.16)

Phong’s illumination model can also be formulated using the halfway vector H (Fig. 8.8.)

The halfway vector points midway between the direction of the light source and the viewing
direction. If H and N point in the same direction, the viewer sees the brightest highlight be-
cause R and V point in the same direction. Using the halfway vector, the specular term can be
expressed by

142

8.1 Lighting

Figure 8.7: Propagation map for different n

(cosβ)n = (N ·H)n (8.17)

With

H =
L+V

|L+V|
(8.18)

From Fig. 8.8 it can be seen that the angle β is not equal to the angle α. Therefore, the specular
exponent n does not produce the same results as the original Phong model.

Multiple light sources with different characteristics and positions in the scene can pass through

Iλ = IaλkaOdλ +
∑

1<=i<=m

fattiIpλi
[kdOdλ(N · Li) +Osλ(Ri ·V)n] (8.19)

be modeled. However, Ilambda must be checked for overflow.

143

8 Lighting, Shading and Texturing

8.1.8 Modeling light sources

In addition to the simple point light source, spotlights can also be approximated using simplified
light intensity distributions. The Warn illumination model is used, in which a light source is
modeled as a specular reflection distribution of a single point that is illuminated by a point light
source (Fig. 8.9). A specular exponent p can now be defined for the reflector on which the point
is located, which describes the opening angle of the spotlight.

Figure 8.8: Warn’s lighting model and spotlight

The light intensity at a point on the object thus increases

IL′λ(cosγ)
n (8.20)

where IL′λ denotes the intensity of the hypothetical light source. Replacing the cosine term with
a scalar product gives

IL′λ(−L · L′)p (8.21)

This expression can now be used for Ipλ in (8.15) or (8.16).

Fig. 8.10 shows goniometric diagrams of the intensity distributions (luminous intensity dis-
tribution, cf. also chapter 2.2.2) of Warn’s light sources with different specular exponents p
compared with the intensity distribution of a point light source. The intensity is recorded as a
function of the angle from the light source axis in polar coordinates. The arrow represents the
direction vector L’.

144

8.2 Shading

Figure 8.9: Goniometric diagrams of Warn’s light sources and a point light source

8.2 Shading

Since the lighting model has to be evaluated at many different points in a scene for shading,
the question of the frequency of this calculation arises, particularly in the case of polygonal
representations of objects.

8.2.1 Constant shading

In the simplest case, the lighting equation only needs to be calculated once per polygon. This
leads to a constant color value over the entire area. This type of shading is called Flat Shading
or Constant Shading.

This is only ok if either the light source is at infinity or the polygon is very small.

8.2.2 Gouraud shading

For a convincing shading of polygonal bodies, the lighting model has to be evaluated at every
point of the scan conversion, or one has to interpolate appropriately. With Gouraud Shading
only corner point intensities are interpolated over the surface. This accounts for the shape and
curvature of the approximated surface. To do this, the normals on all corner points of the
polygons must be known. If the corner point normals are not given, they can be calculated from
the surface normals (Fig. 8.11).

Gouraud shading then takes place in four steps:

1 Calculate the surface normals.

2 Calculate the normal to each vertex V as

Nv =

∑
i=1

Ni

|
N∑
i=1

Ni|

145

8 Lighting, Shading and Texturing

Figure 8.10: vertex and surface normals

3 Calculate the desired lighting model at each vertex.

4 Interpolate the intensity Ip for each discrete point P of the polygon according to Fig. 8.12
(bilinear interpolation).

Figure 8.11: Intensity interpolation along polygon edges and scan lines

Gouraud shading is widespread and often implemented in hardware. Disadvantages of the pro-
cess, however, are incorrect highlights, especially on the inside. The abrupt changes in intensity
that occur with flat shading can also be weakened with gouraud shading, but not completely
eliminated.

Note that the decomposition of a non-planar quadrilateral into two
triangles is not unique. The corresponding bilinear interpolation
surface is not planar.

146

8.2 Shading

For very large polygons relative to the pixel size, interpolation artifacts typically occur and
specular effects cannot be represented. For small polygons relative to the pixel size, all the
effects of the Phong model can be simulated.

Figure 8.12: Illuminated sphere approximated by different numbers of polygons as wireframe and as
solid

8.2.3 Phong shading

In contrast to the interpolation of intensities, the surface normals are interpolated with Phong
Shading. For this purpose, the surface normal is interpolated from the corner points at each
point P and the corresponding lighting model is thus evaluated. This gives a more accurate
approximation of the surface. The interpolation is done on the span of a polygon on a scan line
between the normal at the beginning and that at the end of the span. These normals are in turn
interpolated between the corresponding vertex normals (Fig. 8.14).

147

8 Lighting, Shading and Texturing

Figure 8.13: Interpolation of the normal vector in Phong shading

If the surface normals are not given explicitly, the corner point normals can be calculated by
averaging the cross products of all adjacent edge vectors. For example, the normal at the corner
point V1 in Fig. 8.15 is calculated

NV1 =
V1V2 × V1V4 + V1V2 + V1V4 × V1V5

|V1V2 × V1V4 + V1V2 + V1V4 × V1V5|

Figure 8.14: Interpolation of the vertex normals

Figure 8.16 shows the three shading methods Flat Shading (left), Gouraud Shading (middle)
and Phong Shading (right) in direct comparison. The differences between the first two meth-
ods are obvious, while the differences between Gouraud and Phong shading are particularly
recognizable in the case of highlights (shining points) - for example on the spout.

Consider which shading operations can be performed in image space
and which in object space.
What implications does this have for 3D graphics accelerators?

148

8.3 Transparency and refraction

Figure 8.15: Flat, Gouraud and Phong Shading in comparison

8.3 Transparency and refraction

When passing into an optically thinner or thicker medium, light rays are refracted according to
the Huygens-Fresnel principle.

Figure 8.16: Refraction in the water glass

When passing from one medium to another, Snell’s law of refraction applies (Fig. 8.18).

sinθi
sinθt

= ηti =
ηt
ηi

(8.22)

149

8 Lighting, Shading and Texturing

Figure 8.17: Snell’s law of refraction

The reflected vector T results from a linear combination of I and N. A derivation is presented
in the following Section 8.3.1.

T = αI+ βN (8.23)

The refractive index is a function of wavelength (Fig. 8.19 (a)).

Another phenomenon to consider is total internal reflection from optically thinner media.

Figure 8.18: Refractive index as a function of wavelength (left) and some typical indices measured at a
fixed wavelength (right).

150

8.3 Transparency and refraction

8.3.1 Derivation of the refraction vector

The vector T can be derived using Fig. 8.20.

Figure 8.19: Arrangement for the derivation of the vector T

With St,i = sin(θt,i) and Ct,i = cos(θt,i the following applies:

St

Si

= ηit (8.24)

T = αI+ βN

We are looking for the sizes α and β. The following notation is introduced for this purpose:

cos(θi) = Ci = (N · (−I)) (8.25)
cos(θt) = Ct = (−N ·T) (8.26)

By squaring the equation (8.24) one obtains

S2
i η

2
it = S2

t

or

(1− C2
i)η

2
it = (1− C2

t)

151

8 Lighting, Shading and Texturing

This becomes

(1− C2
i)η

2
it − 1 = −C2

t

= −[−N ·T]2

= −[−N · (αI+ βN)]2

= −[α(−N · I) + β(−N ·N)]2

= −[αCi − β]2

because N ·N = 1. Likewise:

1 = T ·T
= (αI+ βN) · (αI+ βN)

= α2(I · I) + 2αβ(I ·N) + β2N ·N)

= α2 − 2αβCi + β2

Finally we get the system of equations:

(1− C2
i)η

2
it − 1 = −[αCi − β]2

1 = α2 − 2αβCi + β2

which only gives a concrete solution for α and β. Inserted into (8.23) we get

T = ηitI+ (ηitCi −
√
1 + η2it(C

2
i − 1)) ·N

This calculation is essential for calculating transparency in ray tracing (see Chapter 10).

8.3.2 Neglecting refraction (α blending)

Simple transparency can be achieved, for example, by so-called α-blending: If there is a trans-
parent polygon P1 between the viewer and polygon P2, the following applies (Fig. 8.21):

Due to the filter effect of P1, Iλ2 is weakened with

I ′λ2
= Iλ2 · e−α1δt

Linearizing and δt = 1 results in

I ′λ2
= Iλ2 × (1− α1)

152

8.4 cast shadow

Figure 8.20: Absorption factor in α blending

The contribution of P1 is

I ′λ1
= Iλ1 · α1 · δt = Iλ1 · α1

so that

Iλ = I ′λ1
+ I ′λ2

= Iλ1 · α1 + Iλ2(1− α1)

where Iλ1 is the general volume intensity. This results in the filtered intensity Iλ for N polygons

Iλ =
N∑
i=1

αiIλi
·
i−1∏
b=1

(1− αb) (8.27)

This method linearizes absorption effects and is often implemented in hardware.

8.4 cast shadow

Shadows contribute significantly to improving the realistic impression. They determine the
points that are visible or invisible from a light source. If there are several light sources, each
must be considered separately. Shadow calculation is therefore closely related to the Visible
surface calculation problem. A visible surface algorithm calculates which surfaces are visible
to the observer, while a shadow algorithm determines those surfaces which are "seen" by the
light source. With extensive light sources and lighting effects, penumbra (penumbra) can occur.
In what follows, however, we limit ourselves to point light sources.

The lighting equation is expanded as follows:

153

8 Lighting, Shading and Texturing

Iλ = IαλOdλ +
∑

1<=i<=m

SifattiIpλi
[kdOdλ(mathbfN · Li) + ksOsλ(Ri ·V)n] (8.28)

Si =

 0, if the light i is blocked at this point

1, if the light i reaches the object at this point

8.4.1 Scan line shadow calculation

One way to calculate the shadow cast is to extend the scan line algorithm to include shadow
projections. The edges of possibly shadow-casting polygons are projected onto all polygons
in the direction of the light flux that are intersected by the current scan line (Fig. 8.22). This
creates additional partial areas (partial polygons) on the existing polygons, which represent the
shadow areas. As soon as such a projected line is crossed during scan conversion, the pixels
lying in the shadow can be darkened accordingly.

A brute-force implementation of the procedure requires the calculation of all n(n − 1) projec-
tions of all polygons onto all other polygons. The cost is therefore of order O(n2).

8.4.2 Shadow Volumes

The area of influence of the shadow cast by a polygon can be understood as a volume. Such a
shadow volume is defined by the light source and an object and is bounded by invisible shadow
polygons. Each silhouette edge of the object relative to the light source creates a quadrilat-
eral shadow polygon bounded on three sides by the silhouette edge itself and the rays of light
emanating from the light source passing through the endpoints of the edge. The fourth side is
formed by a scaled copy of the shadow-casting polygon that is far enough from the light source
to be outside its sphere of influence (Fig. 8.23). The normals of the shadow polygons point
outward, as do the normals of the original polygon and the scaled copy. So the normal of the
copy is inverted.

The determination of whether an object point is in the shadow or not is achieved with the help of
the shadow volumes. Objects lying behind a shadow polygon with the normal pointing towards
the observer (front-facing polygon, polygon A and B in Fig. 8.23) are in the shadow. A shadow
polygon with a normal pointing away from the observer (back-facing polygon, polygon C in
Fig. 8.23) cancels the effect of a front-facing polygon again.

Imagining a vector from the observer V to a point on an object, the point is in shadow if the
vector intersects more front-facing than back-facing shadow polygons. For this reason, points
A and C in Fig. 8.24 (a) are shaded. As long as the observer himself is not in shadow, every
other point is illuminated (point B). If the observer is in shadow himself, an additional rule
must be observed: A point is also in shadow even if a corresponding back-facing polygon has
not yet been cut for each shadow volume within which the observer lies (point B in Fig. 8.24
(b)).

154

8.4 cast shadow

Figure 8.21: Scan-Line Shadow Algorithm

The algorithmic realization succeeds simply by assigning the value +1 to front-facing and −1
to back-facing polygons. A counter is initially initialized with the number of shadow volumes
within which the observer is located and then incremented with the values of the shadow poly-
gons located between the eye point and the point in question on the object. The point is in
shadow if and only if the counter is positive (>= 1), otherwise it is illuminated. The number
of shadow volumes within which the observer is located only has to be calculated once for each
eye point. It can be determined by shooting a beam in any direction, starting from the eye point.
For each back-facing polygon intersected, −1 is added, for each front-facing polygon, +1 is
added to a counter previously initialized to zero. The value of the negated counter just corre-
sponds to the number sought.

The shadow polygons and volumes are not calculated for each polygon, only for the object
silhouette relative to the light source. Multiple light sources cause multiple shadow volumes
per object. The complexity of the algorithm essentially depends on the additional number of
shadow polygons.

155

8 Lighting, Shading and Texturing

Figure 8.22: Shadow volume defined by the light source and the shadow-casting polygon

Figure 8.23: Calculating the shadow cast with the help of shadow volumes

156

8.5 Texture Mapping

8.5 Texture Mapping

An essential aspect of creating realistic images is the enrichment of surfaces with details. This
can be both local modulations of color and intensity, as well as changes in the smoothness and
surface texture of the object.

• The modulation of color and brightness is done by mapping a modulation function or an
image onto the surface.

• The change in the surface texture is realized by a perturbation of the surface normal.

8.5.1 Mapping of brightness and color functions

This form of texture mapping can essentially be understood as a two-stage process according to
Fig. 8.25.

Figure 8.24: Texture mapping from pixel to surface into texture map

A mapping from the texture coordinate system (u, v) to the target area on the object surface is
first carried out using a transformation rule. After that, object and surface are mapped into the
screen coordinate system.

The texture space is given with the orthogonal coordinates (u, v) and with (θ, ϕ) the orthogonal
coordinate system of the surface. We are looking for a mapping function of the form:

θ = f(u, v) ϕ = g(u, v) (8.29)

or alternatively

u = r(θ, ϕ) v = s(θ, ϕ) (8.30)

157

8 Lighting, Shading and Texturing

Usually, linear mapping functions of the kind

θ = Au+B ϕ = Cv +D (8.31)

for use, where the constants A,B,C,D are given by the known corresponding points in both
coordinate systems (control points).

Figure 8.25: Mapping a line texture to a spherical octant

Example: Texture mapping to a spherical octant

The mapping function of a pattern given in the Cartesian coordinate system (u, v) to a spherical
octant is to be calculated (Fig. 8.26). The parametric description of the sphere is:

x = sinθsinϕ

y = cosϕ 0 ≤ θ ≤ π/2

z = cosθsinϕ π/4 ≤ ϕ ≤ π/2

With the linear mapping function (8.31) and the control points

u = 0, v = 0 with θ = 0, ϕ = π/2

u = 1, v = 0 with θ = π/2, ϕ = π/2

u = 0, v = 1 with θ = 0, ϕ = π/4

u = 1, v = 1 with θ = π/2, ϕ = π/4

arises:

A = π/2 B = 0 C = −π/4 D = π/2

158

8.5 Texture Mapping

With this the mapping functions (8.31) become

θ =
π

2
u ϕ =

π

2
− π

4
v

For the inverse functions one finds:

u =
θ

π/2
v =

π/2− ϕ

π/4

The table in Fig. 8.27 results for the mapping of the lines of the texture map in Fig. 8.26 (a).
The lines shown are shown in Fig. 8.26 (c).

u v θ ϕ x y z

1/4 0 π/2 π/2 0.38 0 0.92

1/4 7/16π 0.38 0.20 0.91

1/2 3/8π 0.35 0.38 0.85

3/4 5/16π 0.32 0.56 0.77

1 π/4 0.27 0.71 0.65

Table 8.1: Mapping of the lines from Fig. 8.26 (a) to the spherical octants in Fig. 8.26 (b)

Example: mapping for a cylinder

Given is a cylinder of radius Cr and height Ch with:

X2
C + Y 2

C = C2
r with 0 ≤ ZC ≤ Ch

We are looking for the (u, v) coordinates for the (intersection) point Ri(xi, yi, zi), where u ∈
[0..1] with the +x axis starts and v ∈ [0..1] runs along the cylinder wall parallel to the z axis.
You get:

v =
zi
Ch

u′ =
acos xi

Cr

2π

If yi < 0, set u = 1− u′, else u = u′.

159

8 Lighting, Shading and Texturing

Figure 8.26: Coordinate relationships in texture mapping to a cylinder

8.5.2 Reflection Mapping

A special form of texture mapping is the so-called reflection mapping. A ray (vector) ve to the
viewer’s eye is assumed for each image pixel. This is reflected via the surface normal n and
results in the vector vr. The texture to be mapped is assumed to be on a virtual sphere, as shown
in Fig. 8.29. The color of the pixel then results from the intersection of the vector vr with the
virtual sphere and interpolation in the texture map.

Reflection mapping is a fast alternative to ray tracing, especially when simulating specular
reflections.

8.5.3 Aliasing Effects in Texture Mapping

With the mapping methods described, aliasing effects can occur due to the finite screen res-
olution, with neighboring pixels only insufficiently representing the original resolution of the
texture. This can be resolved by the following procedures:

1 object space subdivision
The object surface is subdivided until only one pixel is covered in the screen system. Suppose
the textured spherical octant from Fig. 8.26 is to be rotated by−45◦ around the y-axis and by
35◦ around the x-axis and in a screen resolution of 32 pixels with an orthographic projection
(Fig. 8.31 (a)). The texture is given in a resolution of 6464, with the lines each being one
pixel wide (Fig. 8.31 (b)).

160

8.5 Texture Mapping

Figure 8.27: Calculation of texture coordinates in reflection mapping

First, the object surface is subdivided until only one pixel center is covered in screen coor-
dinates (in the example 4 subdivisions). The resulting subpatch ranges from 0 <= θ <=
π
32
, 31
64
π <= ϕ <= π

2
in object space . With the inverse mapping functions, the coordinates of

the patch in texture space are also given:

θ = 0, ϕ = π/2 → u = 0, v = 0

θ = 0, ϕ =
31

64
π → u = 0, v = 1/16

θ = π/32, ϕ =
31

64
π → u = 1/16, v = 1/16

θ = π/32, ϕ = π/2 → u = 1/16, v = 0

In the example, exactly 4 × 4 texture elements, so-called texels, are covered by the pixel.
The intensity of the texture can now be calculated by averaging the texel values or by other

161

8 Lighting, Shading and Texturing

Figure 8.28: Illustration of Reflection Mapping

Figure 8.29: Texture mapping by object space subdivision

texture filters. In the opposite case, where a texel covers several pixels, interpolation (bilinear)
between the texels has to be carried out. The diffuse reflection component of the lighting

162

8.5 Texture Mapping

model is usually modulated with the value determined from texture mapping. The advantage
of the method is that neither the inverse mapping function from screen to object space nor
knowledge of the depth (z coordinate) of the subpatch is required.

2 Inverse mapping

Alternatively, the pixel area can be mapped from the screen coordinate system back to object
space and then to texture space. To do this, the inverse transformations for the viewing
transformation and the projection as well as the depth (z value, often known from a visible
surface algorithm) must be known. The pixel intensity in the image space (diffuse reflection
coefficient) then results from filtering the corresponding texels .

The procedure is again explained using the example of the rotated spherical octant. Consider
the pixel 21 <= Px <= 22 and 15 <= Py <= 16 in Fig. 8.31. The normalized image space
in orthographic projection is given by −1 <= x′ <= 1 and −1 <= y′ <= 1. The following
applies:

x′ =
Px

16
− 1y′ =

Py

16
− 1

By defining the unit sphere

z′ =
√

1− (x′2 + y′2)

with x′, y′, z′ as coordinates in the camera coordinate system, the pixel corner points result as
follows after the viewing transformation:

Px Py x’ y’ z’

21 15 0.3125 -0.0625 0.948

22 15 0.3750 -0.0625 0.925

22 16 0.3750 0 0.927

21 16 0.3125 0 0.950

The matrix of the camera transform and its inverse are:

T =

0.707 −0.406 0.579 0

0 0.819 0.574 0

−0.707 −0.406 0.579 0

0 0 0 1

 T−1 =

0.707 0 0.707 0

−0.406 0.819 −0.406 0

0.579 0.574 0.579 0

0 0 0 1

163

8 Lighting, Shading and Texturing

This results in the corner points of the pixel in the object space (world coordinates).

[xyz1] = [x′y′z′1] · T−1

to:

Px Py x y z

21 15 0.795 0.493 0.341

22 15 0.826 0.479 0.296

22 16 0.802 0.532 0.272

21 16 0.771 0.545 0.329

With the parametric description of the sphere

x = sinθsinϕ

y = cosϕ

z = cosθsinϕ

we find:

ϕ = acos(y) θ = asin

(
x

sinϕ

)

Now the pixel vertex coordinates in texture space can be mapped from parameter space to
texture space by the inverse mapping function (see example for subdivision)

u =
θ

π/2
v =

π/2− ϕ

π/4

be calculated:

This method is particularly useful for ray tracing (see Chapter 10).

164

8.5 Texture Mapping

Px Py ρ ω u v

21 15 60.50◦ 66.04◦ 0.734 0.656

22 15 61.34◦ 70.30◦ 0.781 0.636

22 16 57.88◦ 71.28◦ 0.792 0.714

21 16 56.99◦ 66.88◦ 0.743 0.734

Figure 8.30: projection of the pixel in image space onto the texel in texture space

8.5.4 Bump mapping

So far, the surface has only been modulated in brightness and color, but not in its surface tex-
ture. To achieve this, the surface normal, which is used to calculate the lighting model, can be
perturbated using a function or bump map B(u,v).

In the general case let a point P of the surface with P = (x(s, t), y(s, t), z(s, t)) in world
coordinates (x, y, z) and in object parameter coordinates (s, t). The normal N is calculated with
the help of partial derivatives:

N =
δP

δs
× δP

δt
= Ps ×Pt (8.32)

In the case of polygonal surfaces, the calculation of the normal is often unnecessary because it
is already given by Phong’s interpolation.

P is now shifted to P′ by any bump value B:

P′ = P+
BN

|N|
(8.33)

165

8 Lighting, Shading and Texturing

be calculated. The perturbed normal can be approximated by

N′ = N+Bu(N×Pt) +Bv(N×Ps) (8.34)

where Bu and Bv are the partial derivatives of the bump function B(u, v) in texture coordinates.
The derivation of this approximation can be found in the proceedings of SIGGRAPH ’78 (pp.
286-292). The publication is entitled "Simulation of Wrinkled Surfaces" and is by James F.
Blinn.
The mapping process is now analogous to standard texture mapping. Intermediate values can
be generated by bilinear interpolation, while the partial derivatives are by finite differences of
form

Bu =
B(u2, v1)−B(u1, v1) +B(u2, v2)−B(u1, v2)

2∆u
(8.35)

Bv =
B(u1, v2)−B(u1, v1) +B(u2, v2)−B(u2, v1)

2∆v
(8.36)

can be calculated (Fig. 8.33).

Figure 8.31: Core points for calculating partial derivatives with finite differences

The type of interpolation is essential to avoid aliasing effects.

Figure 8.34 shows four different texture mapping methods in comparison. While the example
on the left shows an object that is only modulated in terms of brightness and color, the two
images in the middle illustrate changes in the surface texture. You can clearly see the difference
between bump mapping, in which the normals are changed but not the geometry itself, and
displacement mapping, in which real changes are made to the geometry. The example on the
right is another illustration of reflection mapping.

166

8.5 Texture Mapping

Figure 8.32: Texture mapping methods in comparison (from left to right: modulation of colors - or
brightness values, bump mapping, displacement mapping and reflection mapping)

167

8 Lighting, Shading and Texturing

168

9

The Open Graphics Library (OpenGL)

9.1 Introduction

9.1.1 Graphics systems and standards

3D graphics functionality is increasingly required in many complex application scenarios as an
essential part of a powerful software system. A basic problem is the different configuration of
the underlying hardware and system software. Today, the palette ranges from simple PCs or
Macs to powerful RISC workstations and mainframe computers. The operating systems and
graphical interfaces are correspondingly different, ranging from Windows and MacOS to Win-
dows/NT or X/Motif. Also, individual graphics capabilities and performance can vary greatly
on the same platform. This is particularly the case in the PC sector.

software systems, proposals for the standardization of corresponding interfaces have therefore
been discussed for a long time. Such standards enable the hardware-independent and thus cross-
platform development of software and its exchange. A particular problem is the integration of
3D graphics functionality into existing 2D window systems.

Historically, for example, Postscript has established itself as a description language for the
electronic exchange of documents containing text and 2D graphics for 2D graphics. Another
important step in the area of 2D graphics towards user-friendly user interfaces was the introduc-
tion of the "window" paradigm and its implementation, for example in the form of X-Windows,
which became the standard for the entire UNIX world. In particular, X’s client-server architec-
ture allows integration into modern computer networks.

9 The Open Graphics Library (OpenGL)

In 3D graphics, the situation was and is a bit more confused: Various standards have been pro-
posed and partly also adopted internationally, but none (with the exception of OpenGL) has
found sufficient industrial acceptance. The Graphics Kernel System (GKS) developed at the TH
Darmstadt was originally standardized by ISO9905, although it was conceptually designed for
vector graphics systems. Based on this, the Programmer’s Hierarchical Interactive Graphics
System (PHIGS) and corresponding extensions (PHIGS ++) were proposed, which were ac-
cepted as the standard by ANSI. The PHIGS concept is based on a Display list, which contains
the entire description of the object to be displayed and its attributes. The advantage of a display
list is that objects only have to be described once, even if they are displayed many times. How-
ever, a disadvantage is the inflexibility regarding the interactive manipulation of objects and
their features, because the display list has to be traversed each time. A central structure mem-
ory takes over the administration of the objects. This means that higher-level data structures
and hierarchies are set up to describe scenes. However, the integration of powerful rendering
functionality, such as e.g. B. Texture mapping. Finally, PEX should be mentioned at this point,
which represents a 3D extension of the X server with regard to PHIGS features.

9.1.2 The OpenGL

The Open Graphics Library (OpenGL) was originally developed as IRIS GL in several versions
by the Silicon Graphics (SGI) company since the early 1980s. It was primarily intended for effi-
cient programming of the manufacturer’s high-performance graphics workstations. The library
was not based on a well-founded programming language concept. With the success of the SGI
systems, however, GL gained more and more influence in the field of 3D graphics program-
ming and was finally made available to other hardware and software manufacturers as OpenGL
by SGI. In the meantime, many large and well-known companies are on the list of OpenGL
licensees.

OpenGL is controlled by the OpenGL Architectural Review Board (OpenGL ARB), an industry
consortium of major hardware and software companies that must approve any language con-
vention change. The following 10 companies are currently members of the ARB:

170

9.1 Introduction

• 3D Labs

• Apple

• ATI

• Dell

• Evans & Sutherland

• Hewlett-Packard

• IBM

• Intel

• Matrox

• Microsoft

• nVidia

• sgi

• SUN

http://www.3dlabs.com/

http://www.apple.com/

http://www.atitech.com/

http://www.dell.com/

http://www.es.com/

http://www.hp.com/

http://www.austin.ibm.com/software/OpenGL/index.html

http://www.Intel.com/

http://www.matrox.com/

http://www.microsoft.com/hwdev/devdes/openglalt.htm

http://www.nvidia.com/

http://www.sgi.com/software/opengl/

http://www.sun.com

The current list of members of the OpenGL ARB and further information are available on the
Internet at http://www.opengl.org/developers/about/arb.html.

OpenGL represents a software interface for 3D graphics programming. It is neither descriptive
nor object-oriented. It provides a set of functions and procedures that provide high-quality ren-
dering functionality. It is also independent of the window system used.

OpenGL writes graphic primitives, such as points, lines, polygons, pixels or bitmaps, into a
Framebuffer. The way it is displayed depends on a number of selectable modes, which
can be set individually using additional commands. The primitives are typically specified by
vertices, and each point is processed independently in a pipeline. The OpenGL allows direct
control over basic functions for 2D and 3D display, such as

• Simple definition of geometric objects

• Specification of transformation and projection matrices

• Compilation of display lists

• Definition of lighting and shading models

• Transparency and Fog

171

9 The Open Graphics Library (OpenGL)

• Antialiasing

• Texture Mapping

• Framebuffer operations for composing images

However, structures for describing complex scenarios or objects are not provided. The applica-
tion program (client) sends commands to the GL server, which interprets and executes them.

Since OpenGL performs all operations in or on the frame buffer, this also represents the inter-
face to the window system used. The window system is therefore responsible for the allocation
of the frame buffer resources and for their administration, including the output on the monitor .

9.1.3 OpenGL organizational principles

Fig. 9.1 schematically shows the basic data flow in OpenGL. First, commands are either ex-
ecuted directly or optionally saved in a Display list. An Evaluator evaluates, among other
things, polynomial functions for describing curves and surfaces, in order to then transform them
into polygonal approximations. In the next step, all operations are carried out that work on the
primitives (lines, points, polygons) defined via vertices: transformations, clipping, lighting, etc.
A further step is the rasterization (scanconversion) , which creates a set of framebuffer ad-
dresses. Another class of operations, such as Depth buffering or Blending, are performed on
the generated Fragments before the results are written to the framebuffer. Bitmaps are routed
past the pipeline in a bypass and can either be taken into account as a texture during rasterization
or written directly to the frame buffer as a fragment.

Figure 9.1: Block diagram of data flow in OpenGL

As already mentioned, in contrast to PHIGS, OpenGL does not support higher-order object de-
scriptions. For example, no functions for rendering concave polygons or NURBS are provided.
Such higher primitives must first be decomposed into convex polygons. The OpenGL Utility
Library provides the appropriate routines for describing and decomposing meaningful objects,
which, in addition to concave polygons, also knows NURBS curves and surfaces as well as
spheres, cylinders and cones.

172

9.2 The OpenGL Pipeline

9.2 The OpenGL Pipeline

9.2.1 Graphic primitives

Most geometric primitives are described in OpenGL by simple constructs specifying vertices,
normals, color, texture coordinates, etc., and are enclosed in the glBegin and glEnd commands.
For example, a triangle with coordinates (0,0,0), (1,0,0), and (1,1,0) is specified as follows:

glBegin(GL_POLYGON);
glVertex3i(0,0,0);
glVertex3i(1,0,0);
glVertex3i(1,1,0);
glEnd();

A corresponding color could, for example, be set outside the construct by a command of the
form

glColor3f(0.3,0.4,0.0);

be specified.

OpenGL is a state machine, ie all set commands, such as color definition
or transformation, are retained until they are changed.

Figure 9.2 shows the ten different types of graphic primitives that are defined in this way. As
can be seen in the picture, all these primitives can be described by a simple list of vertices.
Corner points are described by 2, 3 or 4 coordinates (homogeneously) and can be supplemented
by normal (glNormal()), color (glColor()) or texture coordinates (glTexCoord()). Proper
shading thus requires specifying object normals per vertex. The color can be specified in RGBa
or as an index into a look-up table. The initialization takes place via the function

auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);

which sets the so-called display mode of a Windows, which also contains the color model to be
used.

The arguments of the functions and procedures described allow the attributes to be configured
individually. There are several variants for most functions, which differ in their suffixes. Thus,
by appending a 2, two-dimensional data can be specified, while a 3 requires three parameters
for 3D data. There are also different types of arguments. Some functions can be appended with
a v, indicating that the function expects a pointer to a vector (array) of values as an argument,
rather than an argument list.

9.2.2 Transformations

Commands that do not specify vertices or their attributes must not be placed within the glBe-
gin/glEnd construct. This allows efficient processing of all vertex-related commands. When a

173

9 The Open Graphics Library (OpenGL)

Figure 9.2: Types of geometric primitives in OpenGL

Suffix Data Type Open GL type

b signed char GLbyte

s short GLshort

i long GLint

f float GLfloat

d doule GLdouble

v pointer to vector of values

Examples:

glVertex2f(...); float argument list (two float values)

glVertex2fv(...); pointer to float arguments

glVertex3i(...); long argument list (three long values)

vertex is specified, current color, current normal, and current texture coordinates are used to
calculate the corresponding values of that vertex. Fig. 9.3 clarifies the processing.

174

9.2 The OpenGL Pipeline

Figure 9.3: Relationship between coordinates and attributes of a corner point

All vertices are transformed using a model-view matrix, a 4x4 matrix containing both linear and
translational components. Likewise, the texture coordinates can be manipulated using linear
operators. About the function

glMatrixMode(GL_MODELVIEW); /* relies on modelview transformation */

can be used to determine which matrix stack should be influenced by the following operations.
There are four modes to choose from: Modelview, Projection, Texture and Color. The transfor-
mations set in one of the four modes are each managed on a separate stack.

Typical commands used in transformation operations are:

glLoadIdentity();
glTranslatef(x,y,z);
glRotate(f,x,y,z); /* f:angle, x,y,z: axis */

In the following example, general matrix transformations, which are described using 4x4 ma-
trices, are used. A corner point v is transformed to v′ = LMNv.

Example:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N); /* apply transformation N */
glMultMatrixf(M); /* apply transformation M */

175

9 The Open Graphics Library (OpenGL)

Figure 9.4: sequence of vertex transformations to represent primitives

glMultMatrixf(L); /* apply transformation L */
glBegin(GL_POINTS);
glVertex3fv(v); /* draw transformed vertex v */
glEnd();

9.2.3 Lighting Models

The color of each corner point can be calculated using an illumination model or can be prede-
termined individually for each corner point. The parameters of the lighting model are divided
into three categories:

• Material properties to describe the physical object properties.

glMaterialfv(PARAMS); /* material properties */

• Light Source Properties to describe the specific characteristics of a single light source.

glLightfv(PARAMS); /* Light source and its properties */

• Global properties of the lighting model to describe the approximation quality of the model
used.

glLightModelfv(PARAMS); /* Model and its properties

The lighting is always based on corner points. Fig. 9.5 shows three different images as an
example, whereby the lighting is not activated on the left (glDisable(GLLIGHTING)).

The variety of definitions of individual surface properties is illustrated in Fig. 9.6. Different
properties are set for each teapot in order to simulate real materials.

176

9.2 The OpenGL Pipeline

Figure 9.5: a) Monochrome triangle
b) Gouraud-shaded triangle

c) More complex shaded object

9.2.4 Texture Mapping

Textures can be treated in a similar way to the vertices of primitives. Basically, all textures
are processed using a texture generation function and then transformed with a texture matrix in
relation to the object. A texture is defined, for example, by

glTexImage2D(PARAMS);

The texture is generally an RGBa image.

Additional control over the type of mapping and filtering is provided by using

glTexParameterf(PARAMS);

For the actual referencing of the texture coordinates with regard to an object, there are com-
mands of the form

glTexCoordf(PARAMS);
glTexGen(PARAMS); /* allows automatic generation of the

Coordinates − useful in Fig.~9.8 b,c */

In this context, the support of MipMaps (Fig. 9.7) by OpenGL is of
particular importance. It allows the definition of one and the same
texture in different resolution levels. This allows more efficient
management of textures in dynamic scenes. If the object is far from
the viewer, a lower resolution instance of the texture is chosen
or interpolated between two textures.

Automatic generation of mipmaps from the highest resolution image is enabled by

177

9 The Open Graphics Library (OpenGL)

Figure 9.6: Utah teapots with different surface properties

gluBuild2DMipmaps(PARAMS); /* from the GLU library */

supports. Figure 9.8 shows three examples of texture mapping with OpenGL.

Like textures, the creation of fog (fog) is also supported, which is calculated using the blending
functions of the color attributes. A distinction is made between linear and exponential superpo-
sition

178

9.2 The OpenGL Pipeline

Figure 9.7: mipmap representation of a texture

Figure 9.8: a) Typical scene from many textured polygons (driving simulation)
b) Contouring through texture mapping
c) reflection mapping

9.2.5 Clipping and projection

After the primitives are assembled and transformed, they must be clipped to the six canonical
clipping planes. These are for this purpose

glClipPlane(PARAMS);

define. According to Chapter 5, the clipping method used depends on the type of primitive
(point, line, convex polygon). If necessary, new vertex lists are generated, with the associated
attributes having to be approximated by linear interpolation. The six half-spaces defining the
clipping planes are −w ≤ x ≤ w,−w ≤ y ≤ w, and −w ≤ z ≤ w.

As is known, the projection is carried out by dividing the homogeneous coordinate: x/w, y/w,
z/w, the resulting values being in [-1,1]. The viewport is controlled by the commands

179

9 The Open Graphics Library (OpenGL)

Figure 9.9: Viewing Volume of Perspective Projection

glViewPort(PARAMS);
glDepthRange(PARAMS);

controlled.

The function

glFrustum(left,right,bottom,top,near,far);

produces the following matrix in homogeneous coordinates:

R =

2n
rl

0 r+l
rl

0

0 2n
tb

t+b
tb

0

0 0 −(f+n)
fn

−2fn
fn

0 0 −1 0

 (9.1)

R is defined as long as l ̸= r, t ̸= b and n ̸= f .

9.2.6 Raster scan conversion and antialiasing

The raster scan conversion breaks down the illuminated, transformed and clipped primitive
into individual fragments. In addition to a pixel coordinate in the frame buffer, these also
include color, texture coordinates and the depth, e.g. When scan-converting (Chapter 6) a line
or polygon, the associated values are interpolated along the primitives to obtain values for each
fragment. Both thickness and pattern of the line are generated here.

180

9.2 The OpenGL Pipeline

glLineStripple(PARAMS); /* width of rasterized lines */
glLineWidth(PARAM); /* line stipple pattern */

polygons. You will first be commanded by the command

glEnable(GL_LINE_SMOOTH); /* for lines */

activated.

A percentage coverage by the object is calculated for each pixel, as shown in Fig. 9.10, and set
as the a-value for the corresponding pixel in RGBa mode.

Figure 9.10: Determining the percentage coverage of a pixel

Because antialiasing is a computationally expensive operation,

glHint(GL_NICEST); /* as beautiful primitives as possible */
glHint(GL_FASTEST); /* fastest possible variant */
glHint(GL_DONT_CARE); /* no preference */

the system can also be given a note on execution.

9.2.7 Pixels and Bitmaps

Pixel quantities, such as images, are always routed past the entire geometry pipeline and broken
down directly into fragments. There are a number of functions for manipulating pixel sets in
the OpenGL library, such as

glDrawPixels(PARAMS);

181

9 The Open Graphics Library (OpenGL)

which writes a block of pixels directly into the framebuffer. The arguments contain pointers
to the corresponding pixmap or the values of the height and width of the rectangle. Additional
parameters allow a more precise definition of the data format in which the pixmaps are available
and can be used to implement reading routines for common formats such as TIFF, GIF, RGB etc.

You can also work with bitmaps. The function

glBitmap(PARAMS);

writes a binary image to a specified position in the framebuffer.

9.2.8 The framebuffer

As previously described, at the end of the processing pipeline is the framebuffer, which can
be viewed as a rectangular area of pixels. The information of a pixel consists of a number of
bit planes, as in Fig. 9.11, in which different pieces of information are stored. In OpenGL,
a distinction is made between color, depth, stencil and accumulation. The stencil buffer can
contain additional information, which can be manipulated each time new pixels are written
according to defined comparison operators (glStencilFunc()). The accumulation buffer is
extremely interesting for multipass applications. He’s going through

glAccum(PARAMS);

controlled.

Figure 9.11: Bitplanes of the framebuffer

OpenGL supports multipass rendering algorithms. With this method,
one and the same scene is rendered several times and the results
are mixed in the accumulation buffer according to certain algorithms.

182

9.2 The OpenGL Pipeline

An example of this is full-frame antialiasing, where the viewpoint
is jittered (noisy) and the resulting images are accumulated. Likewise,
multipass methods allow the implementation of temporal antialiasing.

OpenGL supports Double-buffering and Stereo, with a maximum of four framebuffers avail-
able (front-left, front-right, back-left and back-right). However, the support of these single
stores depends on the implementation and the environment used. Minimum requirement is a
buffer (front left).

A single fragment (pixel with attributes) is subjected to a series of tests, which can be con-
trolled individually, before it is finally written into the framebuffer. The buffers used for this are
initialized separately by

glClear*(PARAMS);

where * can stand for Color, Index, Depth, Stencil or Accum.

9.2.9 Variable

Another important function for implementing high-quality object descriptions based on OpenGL
are Evaluators. They are used to evaluate polynomial curves or surfaces and are based on a
Bézier basis. On the one hand, the curve or surface can be evaluated point by point. In this case,
the user takes care of defining a corresponding GL primitive:

glMap2f(PARAMS);
...
glBegin();
...
glEvalCoord2(PARAMS);
...
glEnd();

The second option is to use the command

glEvalMesh2(PARAMS);

which calculates a two-dimensional network of points or lines. A NURBS interface is provided
in the GLUtilities.

Subroutines, which very often have to be executed in unchanged form, can be encapsulated in
display lists. These are defined by a name and can be accessed via it.

glNewList(list, mode); /* defines the beginning of the list and a
unique identifier: list */

...
glColor3fv(color_vector);
...

183

9 The Open Graphics Library (OpenGL)

glEndList();
...
glCallList(list);

Other important functions are feedback and selection, which return the framebuffer informa-
tion for a given pixel or describe which parts of a scene are in a certain area of the buffer. They
are important in the context of 3D picking operations.

The selected objects are managed in a Selection Stack.

9.3 Integration into window systems

As described above, OpenGL provides an interface for 3D graphics programming, but does not
have its own functions for managing the frame buffer resources. This is the task of the cor-
responding window system. In the following, the integration of OpenGL in X will be briefly
discussed as an example.

The OpenGL is implemented in the form of an extension of X, the GLX. GLX is a set of func-
tions that allows for a compact and generic wrapping in X. The extension defines a specific
network protocol for the OpenGL rendering functions, which are encapsulated in the X byte
stream.

Basically, the OpenGL needs a frame buffer, in which the graphic data can be written. Such a
pixel array is a Drawable in X. A Window - a form of the drawable - additionally specifies a
V isual, which describes the current frame buffer configuration of the window. However, the
visuals provided by X are not sufficient for the GL requirements and must be extended with
Depth, Accumulation, Stencil, etc. A second type of X visuals is also extended to meet GL
requirements: the Pixmap, which allows off-screen rendering into a software framebuffer.

To use a GL-enabled drawable, the user must first generate an OpenGL context that targets the
current drawable. A copy of an OpenGL renderer is initialized with the information about this
drawable. The OpenGL renderer is conceptually considered as an X server extension, so that
an X client (application program) can connect to it and send OpenGL commands. Fig. 9.12
illustrates the concept described.

This concept also allows the use of several GL contexts at the same time, whereby each GL-
enabled drawable can also understand the complete X instruction set. The buffers not used by X
are simply ignored. However, the synchronization of X and GL commands must be guaranteed
by the user.

As can be seen in Fig. 9.12, there is also a bypass to the X server. This direct way of OpenGL
rendering is primarily of interest for computers that have a hardware subsystem. In this case,

184

9.3 Integration into window systems

Figure 9.12: GLX client, X server and OpenGL renderer

the overhead of the X tokens would limit performance considerably (eg Silicon Graphics work-
stations).

Direct rendering is possible because a specific order of processing X and GL commands is
generally not necessary. If it does, it must be guaranteed by the user through explicit synchro-
nization.

Typical X resource management commands are

auxMainLoop(PARAM); /* register display callback function
auxInitWindow(PARAM); /* open window with specified characteristics

These functions are summarized in the auxiliary library and, in addition to window manage-
ment, are used to recognize and handle simple user interactions (e.g. mouse and keyboard
events). Since OpenGL itself is completely independent of the operating and window system,
such an intermediate layer must be introduced in order to be able to write complete graphics
programs at all. An alternative to the auxiliary library is GLUT (OpenGL Utility Toolkit), which,
in conjunction with the MUI (Micro User Interface), allows for comfortable programming of
more complex graphics programs.

Finally, a simple example should be used to illustrate the use of OpenGL and the wrapping in
X:

/* (c) Copyright 1993, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED */
#include <GL/gl.h>

185

9 The Open Graphics Library (OpenGL)

#include <GL/glu.h>
#include <stdlib.h>
#include "glaux.h"
/* Initialize material property, light source, and lighting model
*/
void myinit(void) {
GLfloat mat_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
/* mat_specular and mat_shininess are NOT default values */
GLfloat mat_diffuse[] = { 0.4, 0.4, 0.4, 1.0 };
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = { 15.0 };

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
}

void drawPlane(void) {
glBegin(GL_QUADS);
glNormal3f (0.0, 0.0, 1.0);
glVertex3f (−1.0, −1.0, 0.0);
glVertex3f (0.0, −1.0, 0.0);
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (−1.0, 0.0, 0.0);

glNormal3f (0.0, 0.0, 1.0);
glVertex3f (0.0, −1.0, 0.0);
glVertex3f (1.0, −1.0, 0.0);
glVertex3f (1.0, 0.0, 0.0);
glVertex3f (0.0, 0.0, 0.0);

186

9.3 Integration into window systems

glNormal3f (0.0, 0.0, 1.0);
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (1.0, 0.0, 0.0);
glVertex3f (1.0, 1.0, 0.0);
glVertex3f (0.0, 1.0, 0.0);

glNormal3f (0.0, 0.0, 1.0);
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (0.0, 1.0, 0.0);
glVertex3f (−1.0, 1.0, 0.0);
glVertex3f (−1.0, 0.0, 0.0);
glEnd();
}
void display (void) {
GLfloat infinite_light[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat local_light[] = { 1.0, 1.0, 1.0, 1.0 };

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();
glTranslatef (−1.5, 0.0, 0.0);
glLightfv(GL_LIGHT0, GL_POSITION, infinite_light);
drawPlane();
glPopMatrix();

glPushMatrix();
glTranslatef (1.5, 0.0, 0.0);
glLightfv(GL_LIGHT0, GL_POSITION, local_light);
drawPlane();
glPopMatrix();
glFlush();
}

void myReshape(int w, int h) {
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho (−1.5, 1.5, −1.5*(GLdouble)h/(GLdouble)w,
1.5*(GLdouble)h/(GLdouble)w, −10.0, 10.0);
else
glOrtho (−1.5*(GLdouble)w/(GLdouble)h,
1.5*(GLdouble)w/(GLdouble)h, −1.5, 1.5, −10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
}

187

9 The Open Graphics Library (OpenGL)

/* Main loop
* Open window with initial window size, RGB display mode
* and simple input event handling.
*/
int main(int argc, char** argv) {
auxInitDisplayMode(AUX_SINGLE | AUX_RGB | AUX_DEPTH);
auxInitPosition(0, 0, 500, 200);
auxInitWindow (argv[0]);
myinit();
auxReshapeFunc (myReshape);
auxMainLoop(display);
}

Output of the example program above

Figure 9.13: Output of the sample program above

188

10

Recursive Raytracing

10.1 Global Illumination

In the previous considerations, the illumination model was only evaluated locally for each pixel
of the image plane to calculate the intensity of a point on the object surface. The algorithm
typically used for this is called ray casting. A ray is projected from the origin of the camera
coordinate system through the current screen pixel into the scene, all object intersections are
calculated and the lighting model is evaluated in the intersection closest to the viewer (see Fig-
ure 10.1).

The method has the advantage that the clipping as well as the hidden surface calculations and
the scan conversion are solved implicitly. However, global lighting effects such as multiple re-
flections are only approximated by the ambient term of the lighting model.

In fact, however, light can contribute to the illumination of a point in complex ways through
reflections and refractions (Figure 10.2).

A global illumination model must therefore be sought that takes such effects into account.

10 Recursive Raytracing

Figure 10.1: Principle of ray casting

10.2 Abstract description by Kajiya’s rendering
equation

The Rendering-Equation (10.1) describes the transport of light from a point x′ to a point x in
space under the influence of the reflection of light from all points x′′ of the scene via x′ to x.

Figure 10.2: Influence of reflection and refraction on lighting

190

10.3 Recursive Raytracing

I(x, x′) = g(x, x′)×
[
ϵ(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

(10.1)

The terms that appear have the following meaning:

I(x, x′) Describes the intensity (light flux component) from x′ to x

g(x, x′) geometry term: g(x, x′) =

 0 : x not visible from x′

1/r2 : else

ϵ(x, x′) self-emission term

ρ(x, x′, x′′): Describes the bidirectional reflection function for specular and
diffuse components (BRDF, bidirectional reflection distribution
function)

The intensity in x results from self-emission from x′ in the direction of x, as well as from scat-
tered reflection of the intensities of all points x′′ in the direction of x′.

The fundamental relation of Kajiya’s Rendering Equation describes an ultimate lighting model
to be approximated. A diffuse approximation is achieved using the radiosity method, while
the recursive raytracing method, discussed in detail in the following chapter, approximates the
specular effects.

10.3 Recursive Raytracing

To calculate the color and intensity of multiple perfectly reflected and transmitted light, the path
from the light source to the eye must be traversed (Figure 10.3). The color of the light enter-
ing the eye depends on the object colors seen and on the intensity and color of the incident light.

This results in the following algorithm:

After the first intersection, trace the ray back into the scene to a given recursion depth and
evaluate the lighting model at each intersection.

Through the recursion, the reflected and transmitted rays as well as the so-called shadow rays
build up a binary tree structure (Figure 10.4).

Example Recursive raytracing using the example of the scene in Figure 10.4:

1. Send a ray from the eye through the current pixel in the image plane

2. Ray hits plane 3→ Split into a transmitted ray T1 and a reflected ray R1

191

10 Recursive Raytracing

Figure 10.3: REflection and transmission on the way eye-light source

3. To calculate the level 3 contribution, a shadow ray is sent to each light source:
S1 after LA → visible
S2 after LB → not visible (section with sphere 4)

4. Evaluation of the local lighting model on level 3 for LA

5. To calculate the total intensity, calculate the proportions of R1 and T1:

5.1. Track T1

a) T1 hits sphere 6 and is reflected→ ray R2

b) Send shadow rays S3 and S4 to LA or LB (both visible)

c) Evaluation of the local lighting model on sphere 6 for LA, LB

d) Follow R2 further→ exits scene→ background color

5.2. Track R1

a) R1 meets level 9→ rays R3 and T2

b) Send shadow rays S5 and S6 to LA or LB (both visible)

c) Evaluation of the local lighting model on level 9 for LA, LB

d) Follow R3, T2 forward→ exit scene→ background color

192

10.3 Recursive Raytracing

Figure 10.4: Path of a line of sight in an example scene

10.3.1 Schematization of the algorithm by ray tree

The nodes of the tree contain object intersections and the local evaluations of the lighting model,
while the edges represent the rays. The left branch is the transmitted one, the right one the re-
flected one.

The illumination is calculated by a bottom-up traversal of the tree. The result is a two-stage
process of beam generation (intersection calculation) and traversal (evaluation of the lighting
model).

10.3.2 Recursive definition of the local lighting model

The traversal of the tree implies a recursive definition of the lighting model. Starting from
Phong’s illumination model (8.27) one finds the following illumination equation (specular term
expressed by halfway vector):

Imλ = IaλkaO
m
dλ +

∑
smi fattiIpλi

[kdOdλ(N · Li) + ks(N ·Hi)
n] + kSI

m+1
rλ + ktI

m+1
tλ (10.2)

193

10 Recursive Raytracing

Figure 10.5: Resulting binary ray tree for the example scene in Figure 10.4

Intensity of a reflected or transmitted ray Imλ in the depth m of the tree results from the intensities
of the two sons Im+1

rλ and Im+1
tλ weighted with the coefficients ks and kt as well as from the

lighting model evaluated locally at the intersection. S,
im describes the result of the shadow ray

calculation (delta function: 1→ visible; 0→ invisible). In addition, the attenuation caused by
the accumulated beam length should also be included in the equation (e.g. weighting of I with
1/dis).

10.3.3 Typical ray tracing algorithm

If necessary, the algorithm from Figure 10.6 generates a reflected and a transmitted beam at
each intersection point. It then first wanders through the subtree of the transmitted rays (the
right subtree in Figure 10.7). If the end of the subtree is reached - either because there is no
longer any transmission or because the maximum recursion depth has been reached - the light-
ing model is evaluated at this point. For this purpose, the corresponding left subtree is generated
first.

A stack is used to manage the beams. Because the stack only ever has to contain a part of the
entire ray tree, it never becomes larger than the maximum recursion depth. The generation of
reflected or transmitted beams corresponds to a push operation on the stack, while pop opera-
tions are required to evaluate the lighting model.

194

10.3 Recursive Raytracing

Figure 10.7 shows the course of the algorithm as a traversal of the ray tree, which takes place
along the dashed line. Down arrows correspond to push operations, while up arrows represent
pop operations.

The following information is located on the stack for each ray:

Ray number: Unique number for each ray

Ray type: Beam type:

v: Line of sight

r: Reflected ray

p: Transmitted ray

Ray source number: Ray number of the ray that created the current ray

Ray source type: v,r or p depending on the generating ray

Intersection flag: 1 if an intersection was found for this ray
0, otherwise

Object pointer: pointer to the object properties of the intersected object in
the object description list

Intersection values: x−, y− and z−coordinates of the intersection from which
the current ray originates

Direction cosines: direction of the ray

d: distance between intersection of current ray and intersection
of generating ray (Intersection values)

It: intensity of the transmitted light along the beam

Is: Intensity of the specularly reflected light along the beam

The intensity (component Calculate intensity I in Figure 10.6 is calculated according to the
following formula (like formula (10.2) for monochrome situations)

I = kaIa + kd
∑
i

SiIIi(n · Li) + ks
∑
i

SiIIi(S ·Ri)
n + ksIs + ktIt (10.3)

Here, ka, kd, and ks denote the ambient, diffuse, and specular reflection coefficients, while kt
stands for the transmission coefficients. Contrary to earlier formulations, but in accordance with
the diagram in Figure 10.8, S designates the direction of vision and Ri the reflection vector of
the light source i with intensity IIl . Figure 10.8 explains the procedure.

195

10 Recursive Raytracing

10.3.4 Adaptive tree depth control

The efficiency of the algorithm can be increased by reducing the average depth of the ray tree
and thus the number of intersection calculations. This can be achieved by only generating and
inserting into the tree those rays that also have significant impact on the intensity calculations.

In general, it can be said that the contribution of individual rays decreases with increasing itera-
tion depth - on the one hand due to the attenuation increasing with the path length, on the other
hand due to the cumulative attenuation due to reflection and transmission. A threshold value for
evaluating the significance of the ray contribution can be found by calculating the brightness at
the first intersection of the line of sight with a surface, which occurs at the intersection point by
evaluating the illumination model. All shadow effects are taken into account, but not reflection
and transmission. With each further cut, only the lighting model is evaluated again, this time ne-
glecting the shadow effects. The resulting intensity at the point of intersection is now weighted
with the cumulative reflection and transmission coefficients and inversely proportional to the
distance traveled. If the result falls below a threshold value, the branch of the ray tree does not
need to be pursued any further.

Practical tests have shown that the method leads to an approximately eight-fold increase in
speed. A flaw of this method, however, is that a significant contribution to the intensity can
occur after ray tracing has already stopped.

10.3.5 Ray box intersection calculation

Since complex objects are often approximated by bounding volumes or kept in octrees to avoid
unnecessary intersection tests, the efficient computation of ray box intersections is important.

A simple method for such intersection calculations is based on so-called slabs. A slab is the
space between two parallel planes. Bounding volumes can be easily defined with three slabs.
To test for a ray’s intersection with the bounding volume, one successively computes the inter-
sections with the two planes of each slab, noting the largest near and smallest far intersections.
As soon as the largest near intersection is larger than the smallest far intersection, there is no
intersection with the bounding volume (compare with the parametric clipping in chapter 5.2.3).

The section tests for slabs whose planes are perpendicular to the main axes are particularly
simple (Figure 10.9).

If a box is defined by two points Bl and Bh with

Bl = [xl, yl, zl]

Bh = [xh, yh, zh]

and the ray in a parametric representation by its support point R0 and a direction vector Rd

196

10.3 Recursive Raytracing

Rorigin ≡ R0 = [x0, y0, z0]

Rdirection ≡ Rd = [xd, yd, zd]

R(t) = R0 +Rd · t t ∈ R+
0

this results in the following algorithm:

t_near = − inf;
t_far = inf;

// Shown below for the slab normal to the x−axis

for (all slabs to the main axes x,y and z) {
if (xd == x0) {

//ie the ray is parallel to the planes
if (x0 < x1 || x0 > xh)

// Origin of ray outside
return FALSE;

}
else {

// Calculate Intersection Distances Of Planes
t1 = (xl − x0) / xd;
t2 = (xh − x0) / xd;

if (t1 > t2) swap (t1, t2);// swap t1 and t2
if (t1 > tnear) tnear = t1;
if (t2 < tfar) tfar = t2;

if (tnear > tfar)// no cut
return FALSE

if (tfar < 0)// box is behind ray, no cut
return FALSE;

}
}
return TRUE;

this algorithm is a modification of parametric clipping and is therefore
very efficient. Only really necessary arithmetic operations are
carried out

197

10 Recursive Raytracing

Figure 10.6: Flow chart for recursive ray tracing (for the meaning of the nomenclature see the following
page)

198

10.3 Recursive Raytracing

Figure 10.7: Traversal of the ray tree in the algorithm from Figure 10.6

199

10 Recursive Raytracing

Figure 10.8: Calculation of the intensity at an intersection

200

10.3 Recursive Raytracing

Figure 10.9: Ray box intersection calculation for slabs perpendicular to the main axes

201

10 Recursive Raytracing

202

11

Antialiasing

Since the resolution of computer screens is finite and thus all pixels are discrete, image gener-
ation is essentially a sampling problem as well. If objects are displayed on the screen whose
spatial frequencies are greater than the corresponding Nyquist frequency, aliasing terms arise.
These appear in the image in form of cracks at edges (jaggies), Moiré rings in textures, or false
contours.

Example:
a) Line with and without antialiasing filter
b) Texture mapping with and without antialiasing filter

To compensate for these issues, methods for filtering high spatial frequencies are required.
Before that, however, the essential basic terms and definitions of signal theory are to be recalled
below.

11.1 Definitions

11.1.1 Folding

The convolution integral of two functions f(x) and g(x) is given by:

f(x) ∗ g(x) =
∫ ∞
−∞

f(α) · g(x− α)dα (11.1)

11 Antialiasing

In the discrete case for x = 0, ...,M − 1, the above equation changes to

fe(x) ∗ ge(x) =
M−1∑
m=0

fe(m)ge(xm) (11.2)

In the same way, the 2D convolution can be described as a separable extension of the one-
dimensional case:

f(x, y) ∗ g(x, y) =
∫ ∞
−∞

∫ ∞
−∞

f(α, β)g(x− α, y − β)dαdβ (11.3)

In the discrete case, x = 0, ..,M − 1 and y = 0, .., N − 1 :

fe(x, y) ∗ ge(x, y) =
M−1∑
m=0

N−1∑
n=0

fe(m,n)ge(xm, yn) (11.4)

11.1.2 Fourier Transform

Let F (u) be the 1D Fourier transform

F{f(x)} = F (u) =

∫ ∞
−∞

f(x)e−j2πuxdx (11.5)

with their inverse

F−1{F (u)} = f(x) =

∫ ∞
−∞

F (u)ej2πuxdu (11.6)

where the Fourier transform is also complex for real functions f(x).

In the discrete case it follows that

F (u) =
1

N

N−1∑
x=0

f(x)e
j2πux

N (11.7)

with u = 0, .., N − 1 and the inverse

f(x) =
N−1∑
u=0

F (u)e
j2πux

N (11.8)

with x = 0, .., N − 1.

204

11.1 Definitions

You also get the separable extensions for 2D

F{f(x, y)} = F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j2π(ux+vy)dxdy (11.9)

F−1{F (u, v)} = f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)ej2π(ux+vy)dudv (11.10)

Example:
2D Fourier transform of a block function

Figure 11.1: (a) 2D block function
(b) Corresponding Fourier spectrum
(c) Spectrum shown as intensity distribution (logarithmically scaled)

In the two-dimensional case, the discrete formulation becomes

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
v=0

f(x, y)e−j2π(
ux
M

+ vy
N

) (11.11)

for u = 0, ..,M − 1 and v = 0, ..,M − 1 with the inverse

f(x, y) =
M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(
ux
M

+ vy
N

) (11.12)

Here, u and v are also called spatial frequencies.

205

11 Antialiasing

11.1.3 Elementary Relations

The so-called Parseval energy equivalent exists between the two spaces:

∫ ∞
−∞

∫ ∞
−∞
|f(x, y)|2dxdy =

1

4π2

∫ ∞
− infty

∫ ∞
−∞
|F (u, v)|2dudv (11.13)

and the Heisenberg relation for the resolutions ∆x and ∆u in the spatial and frequency domain

∆x ·∆u ≥ 1

4π
(11.14)

According to the theory of linear, time-invariant systems (LTI), the filtering of a signal f(x)
with an impulse response g(x) results from convolution in the spatial domain. This corresponds
to a multiplication in the frequency domain:

f(x) ∗ g(x) ≡ F (u)G(u) (11.15)

Prerequisites for this are functions of finite energy, f(x) ∈ L2(R) or f(x, y) ∈ L2(R2), i.e.,
square-integrable functions :

∫ ∞
−∞
|f(x)|2dx <∞ (11.16)

11.2 Sampling

11.2.1 Sampling of One-Dimensional Functions

The sampling (sampling, discretization) of a signal results from multiplication by an impulse
comb, where the delta distributions δ(x− x0) are defined as follows:

∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0) (11.17)

The sampling theorem states that the maximum distance between two samples ∆x for a band-
limited function f(x) with an upper limit frequency W is given by:

∆x ≤ 1

2W
(11.18)

The signal can only be perfectly interpolated using a reconstruction filter G(u) if this condition
is met.

The corresponding frequency

206

11.2 Sampling

1

∆x
= 2W (11.19)

is called Nyquist frequency and denotes the minimum required sampling rate.

If the sampling rate 1/∆x is not high enough, overlaps occur in
the spectrum. This prevents a perfect reconstruction, which is
noticeable in the form of aliasing artefacts (Fig. 11.2).

Figures (a) to (f) in Fig. 11.3 correspond to those in Fig. 11.2 with the difference that the sam-
pling rate is sufficiently high to avoid aliasing effects.

The previous results are based on functions of unlimited duration in the spatial domain. Since
this also implies an unlimited sampling time, sampling finite signals is only considered in prac-
tice. Sampling in a finite interval can be represented mathematically by multiplying the sampled
result (figure (e) in Fig. 11.3) by a so-called window. A window is the rectangle function

h(x) =

 1 0 ≤ x ≤ X

0 else
(11.20)

Figures (g) and (h) in Fig. 11.3 show the window function and its Fourier transform, (i) and (j)
the results after multiplying or convolving the signal with the window.

The convolution of the function S(u) ∗ F (u) with H(u) (Fig. 11.3 (j)) produces so-called rip-
pling effects, which are due to the fact that h(x) is a non-band-limited function. Therefore, even
if the conditions of the sampling theorem are satisfied, it is impossible to reconstruct a function
without error if it is only sampled over a limited interval.

So far, all results in the frequency domain have been of a continuous nature, regardless of
whether discrete or continuous functions have been considered in the spatial domain. In order
to obtain a discrete Fourier transform, the continuous transform must be "sampled" with a pulse
comb whose pulses are ∆u units apart. Fig. 11.4 illustrates the situation based on the results (i)
and (j) from Fig. 11.3.

The sampling of the Fourier transform F (u) corresponds to a multiplication with the impulse
comb S(u). This results in the discrete Fourier transform in Fig. 11.4 (f). The corresponding
operation in the spatial domain is a convolution. The corresponding result is shown in figure
(e). It is easy to see that this function has a period of 1/∆u. The discrete Fourier transformation
can therefore be understood as a periodization of the signal in the spatial domain.

If f(x) and F (u) are each sampled at N equidistant points, so that exactly one period is covered
by the N points both in the spatial and in the frequency domain, then applies in the spatial do-
main N∆x = X and in frequency space N∆u = 1/∆x. From this, the elementary relationship

207

11 Antialiasing

Figure 11.2: Illustration of sampling and aliasing (from the complex-valued Fourier transform, the mag-
nitude is plotted)

208

11.2 Sampling

Figure 11.3: Illustration of the sampling of time-limited signals

209

11 Antialiasing

Figure 11.4: Illustration of the Discrete Fourier Transform

between the resolutions ∆x and ∆u follows directly:

∆u =
1

N ·∆x
(11.21)

11.2.2 Sampling of Two-dimensional Functions

The 2D expansion of the δ distributions is given as follows:

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x− x0, y − y0)dxdy = f(x0, y0) (11.22)

The one-dimensional momentum combs are extended to momentum fields s(x, y) with sam-
pling distances ∆x resp. ∆y (Fig. 11.5).

210

11.2 Sampling

Figure 11.5: 2D momentum combs

A function f(x, y) is sampled by multiplying it with an impulse field s(x, y) · f(x, y). The cor-
responding operation in frequency space is the convolution S(u, v) ∗ F (u, v), where S(u, v) is
a momentum field with resolutions 1/∆x and 1/∆y in u- resp. v direction. For a band-limited
function f(x, y) the result of this convolution could look something like Fig. 11.6.

The function f(x, y) can be reconstructed from S(u, v) ∗ F (u, v) by multiplying it with the
interpolation filter (low pass) G(u, v)

f(x, y) = G(u, v)[S(u, v) ∗ F (u, v)] (11.23)

where

G(u, v) =

 1 (u, v) inside the bounding box of R

0 else

if the conditions 1/∆x > 2Wu and 1/∆y > 2Wv (no aliasing) are satisfied. Here, 2Wu and
2Wv denote the bandwidth in the u and v direction, respectively, and thus the localization of the
function in the frequency domain.

From this, the 2D version of the sampling theorem follows:

∆x <=
1

2Wu

(11.24)

∆y <=
1

2Wv

If the discrete 2D Fourier transformation f(x, y) is spatially limited by a 2D window func-
tion h(x, y) (analogous to the 1D window function h(x) in Fig. 11.3), then the convolution

211

11 Antialiasing

Figure 11.6: Representation of a sampled, band-limited 2D function in frequency space

H(u, v) ∗ [S(u, v) ∗ F (u, v)] also produces distortions for the transformation of the sampled
function. Analogous to the one-dimensional case, periodic functions are the exception.

Using methods similar to the 1D case, the following conditions are found on the sampling
resolutions, with a complete 2D period being covered by Nµ1 × N equidistant values in both
the spatial and frequency domain:

∆u <=
1

N∆x
(11.25)

∆v <=
1

N∆y

11.3 Antialiasing Methods

11.3.1 Band Limitation through Filtering

In the simplest case, the band of a discrete image can be limited by post-filtering using various
filter functions. The image function is band-limited and the aliasing artefacts can be eliminated.

An important design criterion for a filter is its frequency response, i.e., linearity in the pass band
(pass band), slope in the transition band (transition band) and attenuation in the stop band (stop
band) (Fig. 11.7).

The simplest filters are so-called B-spline filters, whose impulse responses are generated from
a box filter by repeated convolution with itself. You start with the box filter (B-spline filter of

212

11.3 Antialiasing Methods

Figure 11.7: Design criteria for interpolation filters

the first order)

g1(x) =

 1 |x| ≤ 1/2

0 |x| > 1/2
↔ sinω/2

ω/2
=

sin πf

πf
= sinc f (11.26)

with f = ω/2π as rotation frequency. The frequency response of this filter is a sinc function.
The nth-order B-spline filters now result from (n− 1)-fold successive convolution:

gn(x) = g1(x) ∗ g1(x) ∗ ... ∗ g1(x)↔ sincn f (11.27)

The higher the order of the filter, the faster it decays in the frequency domain. The Fourier trans-
form of such filters always consists of a polynomial of sinc functions. The first two B-spline
filters are shown in Fig. 11.8 (above).

Another popular filter is the Gaussian filter with the impulse response

gσ2(x) =
1

σ
√
2π

e−x
2/2σ2 ↔ Gσ2(ω) = e−σ

2ω2/2 =

√
2π

σ
g1/σ2(ω) (11.28)

where the B-spline filter for n→∞ converges to a Gaussian filter (Fig. 11.8, middle).

The so-called ideal low-pass filter consists of a first-order sinc filter of the form

sinc
(ωcx

π

)
=

sin(ωcx)

πx
↔ g1

(
ω

2ωc

)
=

 1 |ω| ≤ ωC

0 |ω| > ωc

(11.29)

The sinc filter is shown in Fig. 11.8 (below). Due to its infinite impulse response, this type of
filter is also called non-causal.

213

11 Antialiasing

Figure 11.8: Different 1D filters and their Fourier transforms

214

11.3 Antialiasing Methods

The 2D extension of the impulse responses results from the tensor products of the convolution
kernel

g(x, y) = g(x)× g(y)→ g(n,m) = g(n)× g(m) (11.30)

Bilinear interpolation corresponds exactly to second-order 2D B-spline filtering.

Filters can always be viewed as interpolators for the reconstruction of discrete signals. In prac-
tice, a discrete 2D filter kernel is generated and convolved over the image.

Example:
Various discrete 2D filter cores:

Gauss Box Bilinear

1 4 8 10 8 4 1

4 12 25 29 25 12 4

8 25 49 58 49 25 8

10 29 58 67 58 29 10

8 25 49 58 49 25 8

4 12 25 29 25 12 4

1 4 8 10 8 4 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 2 3 4 3 2 1

2 4 6 8 6 4 2

3 6 9 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 9 6 3

2 4 6 8 6 4 2

1 2 3 4 3 2 1

One disadvantage of filter operations is the loss of image sharpness because high spatial fre-
quencies (sharp edges) are removed.

11.3.2 Filtering of Textures

When using texture mapping, it becomes clear that interpolation is required to reconstruct the
continuous texture signal. The filters described above can be used to achieve this. However, the
following should be noted:

1 The entire theory is based on band-limited signals. However, this is not always the case with
textures.
Example: checkerboard pattern in the plane, viewed in perspective.

2 The mapping process maps the screen’s regular sampling grid to an irregular grid in the
texture’s parameter space.

215

11 Antialiasing

Figure 11.9: Same shapes on screen correspond to different shapes in texture space

In case 1, the aliasing can only be reduced at the expense of the resolution. In case 2, affine
mappings into the texture space generate spatially variant filter kernels, which, for example, al-
low isotropic, circular filter kernels to degenerate into ellipses of different alignment and length
(Fig. 11.9). Therefore, spatially invariant filtering in the texture space by bilinear interpolation
is subject to error. This can be remedied by location-variant filters (Fig. 11.10).

Figure 11.10: Local variant filter: Circular region in screen space (left) are mapped to elliptical region in
texture space. These regions differ in size, eccentricity and orientation. Dots mark pixel
centers.

11.3.3 Raytracing Supersampling Methods

Supersampling is an important method for reducing aliasing artifacts in raytracing. Several
rays are shot into the scene per pixel and the pixel color is determined by averaging. This
corresponds to sampling the signal at a higher sampling rate and band limiting it exactly to
the resolution of the screen. Therefore, in contrast to post-filtering in 2D, the resolution of the
image is not artificially reduced and the image is therefore not blurred.

216

11.3 Antialiasing Methods

Figure 11.11: Example of super sampling: Four corner rays and one center ray are traced for each pixel

A disadvantage of this method is the enormous additional computation time. For this reason,
adaptive supersampling methods have been developed.

11.3.4 Adaptive Supersampling

With adaptive supersampling, a total of five rays through the pixel corner points and through
the pixel center are first calculated. If they differ sufficiently with regard to the calculated in-
tensities, the four segments are further subdivided. This builds a quadtree for the pixel area
(Fig. 11.12).

The final color is computed by bottom-up traversal of the quadtree. The color is recursively
defined for each quadrant by averaging over the children.

11.3.5 Stochastic Supersampling

A problem with regular sampling grids is the occurrence of leakage effects. For example, a sine
function can be sampled exactly in the zeros.

One way of reducing aliasing even with a constant image resolution (sampling rate) is to add
a stochastic sampling process. The cut-off frequency of the signal is reduced in favor of noise.
Part of this noise can be filtered out again by subsequent filtering to the Nyquist frequency. The
most important processes are Poisson sampling and jittering.

Poisson Sampling

In the one-dimensional case, the sampling can be in the form of a pulse comb

217

11 Antialiasing

Figure 11.12: Example of adaptive super sampling

218

11.3 Antialiasing Methods

Figure 11.13: Jittering: Each sampling point is "jiggled" by two uncorrelated random values in the x and
y direction

Figure 11.14: Poisson samples (a) versus jittering (b)

s(x) =
K−1∑
k=0

δ(x− xk) (11.31)

The xk have the distribution

p(xk) =

 1/X 0 < xk < X

0 else
(11.32)

where K = β · X , with the sampling rate β ∈ [0, .., X], is the number of distributions in the
sampling interval. The expected value of the square mean results in:

E
[
|SX(u)|2

]
=

 K2 = β2 ·X2 u = 0

K = β ·X u ̸= 0
(11.33)

The 2D amplitude spectrum of the sampling process results in a single delta distribution sur-

219

11 Antialiasing

rounded by noise. The impulse comb is thus only transformed into a single impulse in the
spectrum and aliasing can therefore no longer occur. The delta functions required for periodiz-
ing the spectrum are missing. However, a noise term is added.

The result is calculated by spectral estimation, where the spectral power density distribution of
the sampling process is determined by

Φs(u) = lim
X→∞

|SX(u)|2

X
= β + 2πβ2δ(u) (11.34)

is given.

With a stationary 1D function f(x), which is statistically independent of s(x), the spectral
power density of the sampled signal results in g(x) = f(x) · s(x) through

Φg(u) = Φf (u) ∗ Φs(u) = β

∫
R

Φf (u)du+ 2πβ2Φf (u) (11.35)

The first term describes a noise process, the second the scaled spectrum of the original image.
This means that the image signal is reduced in favor of (white) broadband noise.

Another generalization is the minimum distance Poisson sampling with

xk+1 = xk + lk (11.36)

and lk exponentially distributed

lk ∼ p(lk) =

 β · e−βy(lk−lk0) lk > lk0

0 else
(11.37)

The value lk0 denotes the minimum distance between the samples. For lk0 = 0, there is Poisson
sampling with β = βy. For βy →∞, there is regular sampling with β = 1/lk0 .

The power density spectrum of the sampled signal becomes

Φs(u) =

 β[1− 2βysin(lk0u) + 2β2
ycos(lk0u)− 2β2

y] u ̸= 0

2πβ2δ(u) u = 0
(11.38)

where the spectral distribution of the noise can be controlled via the product lk0β . The expres-
sion for u ̸= 0 is the so-called Flat Field Response Noise Spectrum (FFRNS), which represents
the noise component of the Flat Field Response scaled with the sampling rate β.

220

11.3 Antialiasing Methods

Figure 11.15: FFRNS for lk0β = 0.5 and lk0β = 0.95

Jittering

In contrast to Poisson sampling, with jittering only the positions of the samples on the regular
grid are disturbed by adding a random variable jk.

xk = yk + jk yk =
k

β
jk ∼ p(jk) k = −∞, ...,∞ (11.39)

(11.40)

The power spectral density distribution of the sampled signal increases

Φs(u) = β[1− |γ(u)|2] + 2πβ2|γ(u)|2
infty∑

k=−∞

δ(uk2πβ) (11.41)

where the first term contains broadband noise and the second term contains an aliasing-producing
impulse comb now. This is weighted by |γ(u)|2. If p(jk) is uniformly distributed over
[−1/2β, ..., 1/2β], the result is

γ(u) =
sin(u/2β

u/2β
= sinc(u/2β) (11.42)

and

Φs(u) = β[1− sinc2(u/2β)] + 2πβ2δ(u) (11.43)

which means that the delta functions that produce aliasing can disappear here as well.

If the jitter is distributed over a smaller interval, e.g., [−α/2β, ..., α/2β], then delta functions
immediately arise at the band limits.

In this approach, therefore, there is the possibility of suppressing the trade-off between aliasing
and noise. It is important to analyze the signal-to-noise ratio.

In the 2D case g(x, y) is the sampled image filtered with the reconstruction filter r(x, y). The
power spectral density is given by:

221

11 Antialiasing

Figure 11.16: FFRNS for uniformly distributed jitter

Figure 11.17: FFRNS for α = 1.0 and α = 0.5

Φgr(u, v) = [Φf (u, v) ∗ Φs(u, v)] · |R(u, v)|2 (11.44)

The spectra of the scanning processes are always of the form

Φs(u, v) = 2πβ2δ(u, v) + βΦn(u, v) (11.45)

If you plug this in, it follows

Φgr(u, v) = 2πβ2Φf (u, v) · |R(u, v)|2 + β(Φf (u, v) ∗ Phin(u, v)) · |R(u, v)|2 (11.46)

The signal-to-noise ratio (SNR) as an RMS measure is then obtained by integrating the two
terms across the spectrum

∣∣∣∣∣∣∣∣SR
∣∣∣∣∣∣∣∣

RMS

= (2πβ)1/2
[∫ ∫

Rs Φf · |R|2dudv∫ ∫
Rs(Φf ∗ Φn · |R|2dudv

]
(11.47)

So the SNR only falls with the square root of the sampling rate. Normally, reasonable picture
quality results from 40dB.

However, estimating the image spectrum is difficult with synthetic images. Therefore, the fol-
lowing approach can be used with Poisson sampling: Let β be the sampling rate and λ the size
of the smallest detail to be represented. Since the samples with

222

11.3 Antialiasing Methods

P [d < λ] = 1− e−βλ

are distributed, a detail of size λ can be detected with a probability of P0, i.e,

β = − ln(1− P0)

λ

223

	List of Figures
	List of Tables
	1 Introduction
	1.1 Definitions of Graphical Data Processing
	1.2 Areas of graphic data processing
	1.3 Fundamentals of realistic, computer-generated images
	1.4 Rendering Pipeline
	1.5 Visualization Pipeline

	2 Light and Colors
	2.1 Basics of sensory physiology and physics
	2.2 Units of measurement for light
	2.2.1 Light flow
	2.2.2 Light intensity
	2.2.3 Illuminance
	2.2.4 Luminance

	2.3 Definition and Physiology of Color
	2.3.1 definition
	2.3.2 Physiology

	2.4 The norm valence system of the CIE
	2.4.1 CIE standard valence curves
	2.4.2 The CIE Chart
	2.4.3 Important color spaces for practice
	2.4.4 Monitor calibration

	2.5 color spaces
	2.5.1 RGB color space
	2.5.2 CMY color space
	2.5.3 HSV color space
	2.5.4 YIQ color space
	2.5.5 Perception-oriented color spaces

	3 Geometric transformations
	3.1 Introduction
	3.2 2D transformations
	3.2.1 Translation
	3.2.2 Scaling
	3.2.3 Rotation
	3.2.4 Homogeneous coordinates
	3.2.5 Shear
	3.2.6 Scaling and rotation in homogeneous coordinates
	3.2.7 Concatenation of 2D transformations

	3.3 Coordinate systems
	3.3.1 World, object and camera coordinates
	3.3.2 Windows and Viewports
	3.3.3 Calculation bases

	3.4 3D transformations in homogeneous coordinates
	3.4.1 Right and left systems
	3.4.2 Translation
	3.4.3 Scaling
	3.4.4 Rotation
	3.4.5 Inversion
	3.4.6 Shear
	3.4.7 Transformation of normal vectors
	3.4.8 Composite 3D Transforms
	3.4.9 Example application flight simulation

	3.5 3D rotations and translations with quaternions
	3.5.1 Definition and Properties
	3.5.2 Quaternions of length one
	3.5.3 3D rotations using unit quaternions
	3.5.4 Translations and concatenations

	4 Projections for 3D representation
	4.1 Fundamentals of planar projections
	4.1.1 Parallel Projection
	4.1.2 Perspective projections
	4.1.3 Coordinate systems and viewports
	4.1.4 Clipping Planes

	4.2 Mathematics of projection types
	4.2.1 Perspective projection
	4.2.2 parallel projection
	4.2.3 General formulation
	4.2.4 summary

	5 Clipping
	5.1 Introduction
	5.2 Line clipping in 2D
	5.2.1 brute force method
	5.2.2 Cohn-Sutherland Algorithm
	5.2.3 Parametric line clipping (Liang-Barsky / Cyrus-Beck)

	5.3 Polygon clipping in 2D
	5.3.1 Identification of convex polygons
	5.3.2 Sutherland-Hodgeman algorithm
	5.3.3 Liang-Barsky polygon clipping

	5.4 Line clipping in 3D
	5.4.1 Cohn-Sutherland Algorithm
	5.4.2 Parametric Clipping

	5.5 Clipping in homogeneous coordinates

	6 Scan Conversion
	6.1 Lines
	6.1.1 First incremental algorithm (Digital differential analyzer)
	6.1.2 Bresenham's algorithm

	6.2 Circles(Bresenham)
	6.2.1 Derivation from implied circle equation
	6.2.2 Elimination of real arithmetic
	6.2.3 Improvement by second-order partial differences

	6.3 Ellipses
	6.4 Scan conversion of polygons
	6.4.1 A three-step algorithm
	6.4.2 Horizontal edges
	6.4.3 Problems with long thin polygons (slivers)
	6.4.4 Edge coherence
	6.4.5 The Active Edge Table data structure (AET)

	7 Hidden Line and Hidden Surface Algorithms
	7.1 Hidden Line Algorithms
	7.1.1 Back Face Culling
	7.1.2 Appel's algorithm

	7.2 Hidden Surface Algorithms
	7.2.1 Z buffering
	7.2.2 Depth sorting (Newell-Newell-Sancha)
	7.2.3 BSP trees
	7.2.4 Warnock's Algorithm
	7.2.5 Weiler-Atherton Algorithm

	8 Lighting, Shading and Texturing
	8.1 Lighting
	8.1.1 Ambient Light
	8.1.2 Diffuse Reflection
	8.1.3 Attenuation
	8.1.4 Colors
	8.1.5 Depth Cueing
	8.1.6 Specular Reflection (Directional Reflection)
	8.1.7 Phong's lighting model
	8.1.8 Modeling light sources

	8.2 Shading
	8.2.1 Constant shading
	8.2.2 Gouraud shading
	8.2.3 Phong shading

	8.3 Transparency and refraction
	8.3.1 Derivation of the refraction vector
	8.3.2 Neglecting refraction (blending)

	8.4 cast shadow
	8.4.1 Scan line shadow calculation
	8.4.2 Shadow Volumes

	8.5 Texture Mapping
	8.5.1 Mapping of brightness and color functions
	8.5.2 Reflection Mapping
	8.5.3 Aliasing Effects in Texture Mapping
	8.5.4 Bump mapping

	9 The Open Graphics Library (OpenGL)
	9.1 Introduction
	9.1.1 Graphics systems and standards
	9.1.2 The OpenGL
	9.1.3 OpenGL organizational principles

	9.2 The OpenGL Pipeline
	9.2.1 Graphic primitives
	9.2.2 Transformations
	9.2.3 Lighting Models
	9.2.4 Texture Mapping
	9.2.5 Clipping and projection
	9.2.6 Raster scan conversion and antialiasing
	9.2.7 Pixels and Bitmaps
	9.2.8 The framebuffer
	9.2.9 Variable

	9.3 Integration into window systems

	10 Recursive Raytracing
	10.1 Global Illumination
	10.2 Abstract description by Kajiya's rendering equation
	10.3 Recursive Raytracing
	10.3.1 Schematization of the algorithm by ray tree
	10.3.2 Recursive definition of the local lighting model
	10.3.3 Typical ray tracing algorithm
	10.3.4 Adaptive tree depth control
	10.3.5 Ray box intersection calculation

	11 Antialiasing
	11.1 Definitions
	11.1.1 Folding
	11.1.2 Fourier Transform
	11.1.3 Elementary Relations

	11.2 Sampling
	11.2.1 Sampling of One-Dimensional Functions
	11.2.2 Sampling of Two-dimensional Functions

	11.3 Antialiasing Methods
	11.3.1 Band Limitation through Filtering
	11.3.2 Filtering of Textures
	11.3.3 Raytracing Supersampling Methods
	11.3.4 Adaptive Supersampling
	11.3.5 Stochastic Supersampling

