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Digital cameras are the best 
sensors ever!

With a few problems...

3

(Example video)

extra/EnemyOfTheState3Dbag.flv


Transmission interference
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Compression artefacts
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Spilling
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Scratches, Sensor noise
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Bad contrast
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Resolution → Super resolution?
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Super resolution
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ResPlus_Runtime.avi


Removing motion blur

Original image

Cropped subwindow

After motion blur removal
[Images from Amit Agrawal]
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Removing motion blur
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Removing motion blur
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Python is Your Friend

• Run python:

$ python in a terminal or use an online Python 
notebook (e.g. Microsoft Azure notebook)

• Download any simple image

• Load it into Python:

>> import cv2

>> img = cv2.imread(‘foo.jpg’)
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Unassessed Assignment

• Display the image in Python:

>> cv2.imshow(‘My image’, img)

>> cv2.waitKey(0)

• Print the image data array:

>> img

• Print the size of the image array and create a 
subimage:

>> img.shape

>> subimg = img[72:92, 62:82]
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What is an image?



Image as 2D signal

• Signal: function depending on some variable 
with physical meaning

• Image: continuous function
 2 variables: xy - coordinates
 3 variables: xy + time (video)

• Brightness is usually the value of the function 

• But can be other physical values too: 
temperature, pressure, depth …
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Example 2D Images

ultrasound temperature (far IR)

camera image CT19



20

Random Image

>> import numpy as np

>> import cv2

>> t = np.random.rand(64,64)

>> cv2.imshow(‘Random’, t)

>> cv2.waitKey(0)



21

What is an image?

• A picture or pattern of a value varying in space 
and/or time.

• Representation of a function

• In digital form, eg:

I:{1, …, X}{1, …, Y}→S.

• For greyscale images, n = 2, S =+.

Sf n →:



What is a pix-el?

x

y

(x,y)

f(x,y)

(0,0)
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Not a little square!

• A Pixel Is Not A Little 
Square, A Pixel Is Not A 
Little Square, A Pixel Is Not
A Little Square! (And a 
Voxel is Not a Little Cube), 
– Alvy Ray Smith,

MS Tech Memo 6, Jul 17, 1995
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Not a little square!

Illustrations: Smith, MS Tech Memo 6, Jul 17, 1995
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Gaussian reconstruction filter



Not a little square!

Illustrations: Smith, MS Tech Memo 6, Jul 17, 1995
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Cubic reconstruction filter



Not a little square!

Graphics: Dick Lyon, 2006
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Where do images come from?

• Digital cameras

• MRI scanners

• Computer graphics packages

• Body scanners

• Laser range finders

• Many more…
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Where do images come from?

• Digital cameras

• MRI scanners

• Computer graphics packages

• Body scanners

• Laser range finders

• Many more…
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The digital camera

• A Charge Coupled Device (CCD).

Lens

Sensor 

array

ADC

Image array
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http://www.astro.virginia.edu/class/oconnell/astr121/im/CCD-fullframearc-FSU.jpg
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From: Lecture Notes – EAAE
and/or Science “Nuggets” 2000 

Capturing photons

http://www.algonet.se/~sirius/eaae.htm
http://solar.physics.montana.edu/nuggets/2000/001201/001201.html
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The sensor array

• Can be  < 1cm2.

• An array of photosites.

• Each photosite is a 
bucket of electrical 
charge.

• They contain charge 
proportional to the 
incident light intensity 
during exposure.
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Analog to Digital Conversion

• The ADC measures the 
charge and digitizes the 
result.

• Conversion happens line 
by line.

• The charges in each 
photosite move down 
through the sensor array. ADC

RAM
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ADC

RAM
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Blooming

• The buckets have finite capacity

• Photosite saturation causes blooming



Bleeding or smearing

During transit buckets still accumulate some charges

Influenced by time ‘in transit’ versus integration time

Effect is worse for short shutter times (only problem with electronic shutter)
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Dark Current

• CCDs produce thermally-generated charge.

• They give non-zero output even in 
darkness.

• Partly, this is the dark current.

• Fluctuates randomly.

• How can we reduce dark current?

From: Lecture Notes - EAAE 

Yohkoh satellite, 9 years apart ..

http://www.algonet.se/~sirius/eaae.htm
http://solar.physics.montana.edu/nuggets/2000/001201/001201.html


From: Lecture Notes - EAAE 
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Dark Current

• CCDs produce thermally-generated charge.

• They give non-zero output even in 
darkness.

• Partly, this is the dark current.

• Fluctuates randomly.

• How can we reduce dark current?

http://www.algonet.se/~sirius/eaae.htm


40

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier

More noise (reduced by subtracting ‘black’ image)

Lower sensitivity (lower fill rate)

Uses standard CMOS technology

Allows to put other components on chip

‘Smart’ pixels

Canon sensor 

120Mpix@9.5fps burst
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CCD vs. CMOS
• Mature technology

• Specific technology

• High production cost

• High power consumption

• Higher fill rate

• Blooming

• Sequential readout

• More recent technology

• Standard IC technology

• Cheap

• Low power

• Less sensitive

• Per pixel amplification

• Random pixel access

• Smart pixels

• On chip integration        
with other components



CMOS video sensor issues 

• Rolling shutter

– Sequential read-out of lines

Video

The Foundry - Overview.flv


DVS camera

DVS event camera from INI labs (spin-off UNIZ/ETHZ inst. neuro-inf.) 

Camera inspired by human visual system



Sampling 1D

Sampling in 1D takes a function, and returns a vector whose elements are
values of that function at the sample points
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1D Example: Audio

low high

frequencies



© 2006 Steve Marschner • 
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Sampled representations

• How to store and compute with continuous functions?

• Common scheme for representation: samples
– write down the function’s values at many points
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Reconstruction
• Making samples back into a continuous function

– for output (need realizable method)

– for analysis or processing (need mathematical method)

– amounts to “guessing” what the function did in 
between
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Sampling in digital audio

• Recording: sound to analog to samples to disc

• Playback: disc to samples to analog to sound 
again

– how can we be sure we are filling in the gaps correctly?



© 2006 Steve Marschner • 
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Sampling and Reconstruction

• Simple example: a sine wave



© 2006 Steve Marschner • 
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Undersampling

• What if we “missed” things between the 
samples?

• Simple example: undersampling a sine wave

– unsurprising result: information is lost
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave

– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency
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Undersampling

• What if we “missed” things between the samples?

• Simple example: undersampling a sine wave

– unsurprising result: information is lost

– surprising result: indistinguishable from lower frequency

– also was always indistinguishable from higher frequencies

– aliasing: signals “traveling in disguise” as other frequencies



What’s happening?
Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Alias!

Not enough samples



Sampling 2D

Sampling in 2D takes a function and 
returns an array; we allow the
array to be infinite dimensional and to 
have negative as well as positive indices.
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Greyscale digital image



Reconstructing continuous signal

• e.g. Bilinear interpolation



Nyquist Frequency
(a.k.a. Nyquist–Shannon sampling theorem)

• Half the sampling frequency of a discrete 
signal processing system

• Signal’s max frequency (bandwidth) must 
be smaller* than this

  *In later lectures: coping when it’s >=. 59



Sampling grids
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Retina-like sensors

61



Quantization

• Real valued function will get digital values – 
integer values

• Quantization is lossy!! 

– After quantization, the original signal cannot be 
reconstructed anymore

• This is in contrast to sampling, as a sampled but 
not quantized signal can be reconstructed.

• Simple quantization uses equally spaced levels 
with k intervals

bk 2=
63



Quantization

00

01

10

11
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Quantization

00

01

10

11
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Quantization

00

01

10

11
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Image Properties

• Image resolution

• Geometric resolution: How many pixels per area

• Radiometric resolution: How many bits per pixel
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Image resolution

1024x1024

512x512

512x1024

69
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Geometric resolution

144x144 72x72 36x36

18x18 9x9 4x4
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Radiometric resolution

256 128 64 32

16 8 4 2
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Aliasing and SNR

• What is the disadvantage of low sampling 
resolution?

• What is the disadvantage of high sampling 
resolution?

• Lossless vs. Lossy

– Name some formats?
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Unassessed Assignment

Use python to change the geometric and 
radiometric quantization resolution in one of 
your images. For each level of sampling and 
quantization, plot the image function, as in 
slides 71 & 72, and compare the 
approximations to the true intensity function 
that you get at each level.



Usual quantization intervals

• Grayscale image

– 8 bit = 2^8 = 256 grayvalues

• Color image RGB (3 channels)

– 8 bit/channel = 2^24 = 16.7M colors

• 12bit or 16bit from some sensors 

• Nonlinear, for example log-scale

75
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Photo: Paulo Barcellos Jr.

http://upload.wikimedia.org/wikipedia/commons/d/d4/New_York_City_at_night_HDR_edit1.jpg
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Image Noise

• A common model is additive Gaussian noise:

• Poisson noise:
(shot noise)
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Image Noise

• Rician noise:
(appears in MRI)
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Image Noise

• Multiplicative noise:

• Quantization errors

• Impulse “salt-and-pepper” noise

• The signal to noise ratio (SNR) s is an 
index of image quality 
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Colour Images

+ +

=

R G B
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Color cameras

We consider 3 concepts:

1. Prism (with 3 sensors)

2. Filter mosaic

3. Filter wheel

… and X3
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Prism color camera

Separate light in 3 beams using dichroic prism

Requires 3 sensors & precise alignment

Good color separation
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Filter mosaic 

Coat filter directly on sensor

Demosaicing (obtain full colour & full resolution image)

More colors: 
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Filter wheel

Rotate multiple filters in front of lens

Allows more than 3 colour bands

Only suitable for static scenes
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Prism vs. mosaic vs. wheel
Wheel

  1

Good

Average

Low

Motion

3 or more

approach

# sensors

Separation

Cost

Framerate

Artefacts

Bands

Prism

  3

High

High

High

Low

  3

High-end

cameras

Mosaic

  1

Average

Low

High

Aliasing

  3

Low-end

cameras

Scientific 

applications
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color CMOS sensor
Foveon’s X3

better image quality
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The Human Eye

Helmoltz’s 
Schematic
Eye

Reproduced by permission, the American Society of Photogrammetry and
Remote Sensing. A.L. Nowicki, “Stereoscopy.” Manual of Photogrammetry,
Thompson, Radlinski, and Speert (eds.), third edition, 1966.
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The distribution of rods 

and cones across the 

retina

Reprinted from Foundations of Vision, by B. Wandell, Sinauer 

Associates, Inc., (1995). © 1995 Sinauer Associates, Inc.

Cones in the 

fovea

Rods and cones in 

the periphery

Reprinted from Foundations of Vision, by B. Wandell, Sinauer 

Associates, Inc., (1995). © 1995 Sinauer Associates, Inc.



More eyes in nature…

Fernald, R. D. 2006. Casting a Genetic Light on the Evolution of Eyes. Science 313, 1914-1918

More info:



Next week:

Image Segmentation
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