Visual Computing: Image Segmentation

Prof. Marc Pollefeys

Classification outcomes

Greylevel Histograms

Positives and Negatives

ROC curve

Pixel connectivity

 We n whic neig
 Are n pixel not squares.

Pixel connectivity

- We need to define which pixels are neighbors.
- Are the dark pixels in this array connected?

Pixel Neighborhoods

4-neighborhood

8-neighborhood

Pixel paths

A 4-connected path between pixels p₁ and p_n is a set of pixels {p₁, p₂, ..., p_n} such that p_i is a 4-neighbor of p_{i+1}, i=1,...,n-1.

 In an 8-connected path, p_i is an 8-neighbor of p_{i+1}.

Connected regions

• A region is 4-connected if it contains a 4connected path between any two of its pixels.

• A region is 8-connected if it contains an 8connected path between any two of its pixels.

Connected regions

 Now what can we say about the dark pixels in this array?

• What about the light pixels?

Connected components labelling

• Labels each connected component of a binary image with a separate number.

Foreground labelling

• Only extract the connected components of the foreground

Goose detector

Goose detector

Region Growing

• Start from a seed point or region.

Add neighboring pixels that satisfy the criteria defining a region.

• Repeat until we can include no more pixels.

Region Growing

```
def regionGrow(I, seed):
X, Y = I.shape
visited = np.zeros((X,Y))
visited[seed] = 1
boundary = []
boundary.append(seed)
while len(boundary) > 0:
   nextPoint = boundary.pop()
   if include (nextPoint, seed):
           visited[nextPoint] = 2
           for (x, y) in neighbors (nextPoint):
                   if visited[x, y] == 0:
                           boundary.append((x, y))
                           visited[x, y] = 1
```

Region Growing example

- Pick a single seed pixel
- Inclusion test is up to you:

```
def include(p, seed):
 test = ??
 return test
```


Seed pixel

Variations

• Seed selection

• Inclusion criteria

• Boundary constraints and snakes

Seed selection

- Point and click seed point
- Seed region
 - By hand
 - Automatically, e.g., from a conservative thresholding.
- Multiple seeds
 - Automatically labels the regions

Inclusion criteria

- Greylevel thresholding
- Greylevel distribution model
 - Use mean μ and standard deviation σ in seed region:
 - Include if $(I(x, y) \mu)^2 < (n\sigma)^2$. Eg: n = 3.
 - Can update the mean and standard deviation after every iteration.
- Color or texture information

Snakes

- A snake is an *active contour*
- It is a polygon, i.e., an ordered set of points joined up by lines
- Each point on the contour moves away from the seed while its image neighborhood satisfies an inclusion criterion
- Often the contour has smoothness constraints

Snakes

• The algorithm iteratively minimizes an energy function:

•
$$E = E_{\text{tension}} + E_{\text{stiffness}} + E_{\text{image}}$$

• See Kass, Witkin, Terzopoulos, IJCV 1988

Example

Interim Summary

- Segmentation is hard
- But it is easier if you define the task carefully
 - Is the segmentation task binary or continuous?
 - What are the regions of interest?
 - How accurately must the algorithm locate the region boundaries?
- Research problems remain!

Foreground-Background segmentation

Roundabout example

• Input

Distance Measures

Plain Background-subtraction metric:

$$\mathbf{I}_{\alpha} = \left| \mathbf{I} - \mathbf{I}_{bg} \right| > \mathbf{T}$$

$$\mathbf{T} = \begin{bmatrix} 20 \ 20 \ 10 \end{bmatrix}$$
 (for example)
$$\mathbf{I}_{bg} = \text{Background Image}$$

Where Does I_{bg} Come From?

ETH

Note: Outdoor backgrounds change over time!

Distance Measures

Plain Background-subtraction metric:

$$\mathbf{I}_{\alpha} = \left| \mathbf{I} - \mathbf{I}_{bg} \right| > \mathbf{T}$$

$$\mathbf{T} = \begin{bmatrix} 20 \ 20 \ 10 \end{bmatrix}$$
 (for example)
$$\mathbf{I}_{bg} = \text{Background Image}$$

or better

$$\mathbf{I}_{\alpha} = \sqrt{\left(\mathbf{I} - \mathbf{I}_{bg}\right)^{T} \Sigma^{-1} \left(\mathbf{I} - \mathbf{I}_{bg}\right)} > \mathbf{T} = 4 \text{ (for example)}$$

 ∑ background pixel appearance covariance matrix (computed separately for each pixel, from many examples) (sometimes need more than one Gaussian, use Gaussian Mixture Models)

A Word About Shadows

A Word About Shadows

What happened to the color here?

Gaussian's symmetry could mislead a little... (Brighter-only example)

Adding spatial relations

Markov Random Fields

- Markov chains have 1D structure
 - At every time, there is one state.
 - This enabled use of dynamic programming.
- Markov Random Fields break this 1D structure.
 - Field of sites, each of which has a label, simultaneously.
 - Label at one site dependent on others, no 1D structure to dependencies.
 - This means no optimal, efficient algorithms, except for 2-label problems.

Adapted from Derek Hoiem

Markov Random Fields

Markov Random Fields

 $Energy(\mathbf{y};\theta,data) = \sum_{i} \psi_{1}(y_{i};\theta,data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\theta,data)$ Slides from Derek Hoiem

Solving MRFs with graph cuts

Solving MRFs with graph cuts

Foreground-Background segmentation

The code does the following:

- background RGB Gaussian model training (from many images)
- shadow modeling (hard shadow & soft shadow).

Graphcut foreground-background segmentation

http://www.cs.unc.edu/~lguan/Research.files/Research.htm#BS

Foreground-Background segmentation

Background Image

Foreground Image

Background Weight

Shadow Weight

Foreground Result

Graphcut (non-black) Blob finding (white)

Foreground-Background segmentation

GrabCut – interactive foreground segmentation

http://research.microsoft.com/en-us/people/carrot/ http://blogs.technet.com/b/office2010/archive/2009/11/30/more-about-background-removal-in-office-2010.aspx

Problem

What GrabCut does

Boundary

Regions & Boundary

Regions

Cut: separating source and sink; Energy: collection of edges *Min Cut:* Global minimal energy in polynomial time

Iterated Graph Cut

User Initialisation

K-means for learning colour distributions

Graph cuts to infer the segmentation

Iterated Graph Cuts

Result

Energy after each Iteration

Colour Model

Gaussian Mixture Model (typically 5-8 components)

Moderately straightforward examples

... GrabCut completes automatically

Difficult Examples

Camouflage & Low Contrast

Fine structure

No telepathy

Initial Result

Evaluation – Labelled Database

Available online: http://research.microsoft.com/vision/cambridge/segmentation/

Comparison

Boykov and Jolly (2001)

GrabCut

Error Rate: 0.72%

Error Rate: 0.72%

Border Matting

Hard Segmentation

Automatic Trimap

Soft Segmentation

Natural Image Matting

Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

Border Matting

Fit a smooth alpha-profile with parameters

Dynamic Programming

Noisy alpha-profile Regularisation

Results

ETH

Switching to Spatial-domain only:

Morphological Operations

86

What Are Morphological Operators?

- Local pixel transformations for processing region shapes
- Most often used on binary images

• Logical transformations based on comparison of pixel neighborhoods with a pattern.

Simple Operations - Examples

- Eight-neighbor erode
 - a.k.a. Minkowsky subtraction

 Erase any foreground pixel that has one eightconnected neighbor that is background.

8-neighbor erode

8-neighbor dilate

- Eight-neighbor dilate
 - a.k.a. Minkowsky addition

 Paint any background pixel that has one eight-connected neighbor that is foreground.

8-neighbor dilate

Why?

- Smooth region boundaries for shape analysis.
- Remove noise and artefacts from an imperfect segmentation.

Structuring Elements

- Morphological operations take two arguments:
 - A binary image
 - A structuring element.
- Compare the structuring element to the neighborhood of each pixel.
- This determines the output of the morphological operation.

Structuring elements

- The structuring element is also a binary array
- A structuring element has an origin

0	1	0
1	1	1
0	1	0

0	1	0	1
1	0	1	1
0	1	0	0

Binary images as sets

• We can think of the binary image and the structuring element as sets containing the pixels with value 1.

$$I = \{(1,1), (2,1), (3,1), (2,2), (3,2), (4,4)\}$$

Some set notation

 Union and intersection:

$$I_1 \cup I_2 = \{ \underline{x} : \underline{x} \in I_1 \text{ or } \underline{x} \in I_2 \}$$
$$I_1 \cap I_2 = \{ \underline{x} : \underline{x} \in I_1 \text{ and } \underline{x} \in I_2 \}$$

Complement

$$I^C = \left\{ \underline{x} : \underline{x} \notin I \right\}$$

• Difference $I_1 \setminus I_2 = \{ \underline{x} : \underline{x} \in I_1 \text{ and } \underline{x} \notin I_2 \}$

• We use ϕ for the empty set .
Fitting, Hitting and Missing

- S fits I at \underline{x} if $\{y: y = \underline{x} + \underline{s}, \underline{s} \in S\} \subset I$
- S hits I at <u>x</u> if $\{\underline{y}: \underline{y} = \underline{x} - \underline{s}, \underline{s} \in S\} \cap I \neq \phi$
- S misses I at <u>x</u> if $\{\underline{y}: \underline{y} = \underline{x} - \underline{s}, \underline{s} \in S\} \cap I = \phi$

Fitting, Hitting and Missing

Image

0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	1	0	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0
0	1	0	1	0	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	0	0

Structuring element

0	1	0
1	1	1
0	1	0

Erosion

 The image E = I ⊖ S is the erosion of image I by structuring element S.

$$E(\underline{x}) = \begin{cases} 1 \text{ if } S \text{ fits } I \text{ at } \underline{x} \\ 0 \text{ otherwise} \end{cases}$$

$$E = \{ \underline{x} : \underline{x} + \underline{s} \in I \text{ for every } s \in S \}$$

Example

Structuring element

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Example

Structuring element

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Dilation

 The image D = I ⊕ S is the *dilation* of image I by structuring element S.

$$D(\underline{x}) = \begin{cases} 1 \text{ if } S \text{ hits } I \text{ at } \underline{x} \\ 0 \text{ otherwise} \end{cases}$$

$$D = \left\{ \underline{x} : \underline{x} - \underline{s}, \ \underline{y} \in I \text{ and } \underline{s} \in S \right\}$$

Example

Structuring element

Example

Structuring element

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Opening and Closing

• The opening of I by S is

 $I \circ S = (I \ominus S) \oplus S$

• The *closing* of *I* by *S* is

 $I \bullet S = (I \oplus S) \ominus S$

Example

close

Structuring element

nt 1 '

open

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Morphological filtering

- To remove holes in the foreground and islands in the background, do both opening and closing.
- The size and shape of the structuring element determine which features survive.
- In the absence of knowledge about the shape of features to remove, use a circular structuring element.

Count the Red Blood Cells

Granulometry

- Provides a size distribution of distinct regions or "granules" in the image.
- We open the image with increasing structuring element size and count the number of regions after each operation.

• Creates a "morphological sieve"

Granulometry

```
def granulo(I, T, maxRad):
B = (I > T) \# Sequent the image I
# Open the image at each structuring element size up to a
# maximum and count the remaining regions.
numRegions = []
for x in range(1, maxRad + 1):
  kernel = cv2.getStructuringElement(cv2.MORPH ELLIPSE, (x, x))
 O = cv2.morphologyEx(B, cv2.MORPH OPEN, kernel)
  numComponents, = cv2.connectedComponents(0)
  numRegions.append(numComponents)
return numRegions
```

ETH

Count the Red Blood Cells

Threshold and Label

Number of Regions

Granulometric Pattern Spectrum

Hit-and-miss transform

• Searches for an exact match of the structuring element.

H = I Sisting S is the hit-and-miss transform of image I by structuring element S.

• Simple form of template matching.

Hit-and-miss transform

Upper-Right Corner Detector

Thinning and Thickening

- Defined in terms of the hit-and-miss transform:
- The *thinning* of *I* by *S* is $I \oslash S = I \setminus (I \otimes S)$
- The *thickening* of *I* by *S* is $I \odot S = I \cup (I \otimes S)$
- Dual operations:

 $(I \odot S)^{C} = I^{C} \oslash S$

)	0	0		0
	1		1	1
I	1	1		1

0

Sequential Thinning/Thickening

- These operations are often performed in sequence with a selection of structuring elements S₁, S₂, ..., S_n.
- Sequential thinning:

 $I \oslash \{S_i : i = 1, ..., n\} = (((I \oslash S_1) \oslash S_2) ... \oslash S_n)$

• Sequential thickening:

$$I \odot \{S_i : i = 1, ..., n\} = (((I \odot S_1) \odot S_2) ... \odot S_n)$$

Sequential Thinning/Thickening

- Several sequences of structuring elements are useful in practice
- These are usually the set of rotations of a single structuring element.

• Sometimes called the *Golay alphabet*.

Sequential Thinning

• See *morphologyEx* in python.

0 iterations

1 iteration

2 iterations

5 iterations

Inf iterations

Sequential Thickening

1 iteration

2

5 iterations

Skeletonization and the Medial Axis Transform

- The skeleton and *medial axis transform* (MAT) are stick-figure representations of a region $X \subset \Re^2$.
- Start a grassfire at the boundary of the region.
- The skeleton is the set of points at which two fire fronts meet.

Skeletons

Medial axis transform

- Alternative skeleton definition:
 - The skeleton is the union of centres of maximal discs within *X*.
 - A *maximal* disc is a circular subset of *X* that touches the boundary in at least two places.

• The MAT is the skeleton with the maximal disc radius retained at each point.

Medial axis transform

Skeletonization using morphology

• Use structuring element ^B=

• The *n*-th skeleton subset is

$$S_n(X) = (X \ominus_n B) \setminus [(X \ominus_n B) \circ B]$$

 \bigcirc_n denotes *n* successive erosions.

• The skeleton is the union of all the skeleton subsets:

$$S(X) = \bigcup_{n=1}^{\infty} S_n(X)$$

Reconstruction

• We can reconstruct region X from its skeleton subsets:

$$X = \bigcup_{n=0}^{\infty} S_n(X) \oplus_n B$$

- We can reconstruct *X* from the MAT.
- We cannot reconstruct X from S(X).

DiFi: Fast 3D Distance Field Computation Using Graphics Hardware Sud, Otaduy, Manocha, Eurographics 2004

ETH
MAT in 3D

from Transcendata Europe Medial Object Price, Stops, Butlin Transcendata Europe Ltd

Applications and Problems

- The skeleton/MAT provides a stick figure representing the region shape
- Used in object recognition, in particular, character recognition.
- Problems:
 - Definition of a maximal disc is poorly defined on a digital grid.
 - Sensitive to noise on the boundary.
- Sequential thinning output sometimes preferred to skeleton/MAT.

Example

Kanizsa Triangle

Next Week: Image Features