# Visual Computing: IImage Segmentation <br> Prof. Marc Pollefeys 

## Classification outcomes



## Greylevel Histograms




## Positives and Negatives




## ROC curve



FP fraction

## Pixel connectivity

- We reed to define which pixels Warning: neig Pixels are samples, pixe s in thinot squares. conr


## Pixel connectivity

- We need to define which pixels are neighbors.
- Are the dark pixels in this array connected?



## Pixel Neighborhoods



4-neighborhood


8-neighborhood

## Pixel paths

- A 4-connected path between pixels $p_{1}$ and $p_{n}$ is a set of pixels $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ such that $p_{i}$ is a 4-neighbor of $p_{i+1}, i=1, \ldots, n-1$.
- In an 8-connected path, $p_{i}$ is an 8-neighbor of $p_{i+1}$.


## Connected regions

- A region is 4-connected if it contains a 4connected path between any two of its pixels.
- A region is 8 -connected if it contains an 8connected path between any two of its pixels.


## Connected regions

- Now what can we say about the dark pixels in this array?
- What about the
 light pixels?


## Connected components labelling

- Labels each connected component of a binary image with a separate number.


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 1 |
| 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 4 | 1 | 1 | 5 | 5 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 5 | 5 | 5 | 1 | 1 |
| 6 | 6 | 1 | 1 | 1 | 1 | 5 | 5 | 1 |
| 7 | 6 | 1 | 1 | 8 | 8 | 1 | 1 | 1 |
| 7 | 6 | 1 | 1 | 8 | 8 | 1 | 1 | 1 |

## Foreground labelling

- Only extract the connected components of the foreground


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 2 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |

## Goose detector



## Goose detector

1


## Region Growing

- Start from a seed point or region.
- Add neighboring pixels that satisfy the criteria defining a region.
- Repeat until we can include no more pixels.


## Region Growing

```
def regionGrow(I, seed):
    X, Y = I.shape
    visited = np.zeros((X,Y))
    visited[seed] = 1
    boundary = []
    boundary.append (seed)
    while len(boundary) > 0:
        nextPoint = boundary.pop()
        if include(nextPoint, seed):
            visited[nextPoint] = 2
            for (x, y) in neighbors(nextPoint):
                            if visited[x,y] == 0:
                                    boundary.append((x, y))
                                    visited[x,y] = 1
```


## Region Growing example

- Pick a single seed pixel
- Inclusion test is up to you:

```
def include(p, seed):
    test = ??
    return test
```



## EH



## Variations

- Seed selection
- Inclusion criteria
- Boundary constraints and snakes


## Seed selection

- Point and click seed point
- Seed region
- By hand
- Automatically, e.g., from a conservative thresholding.
- Multiple seeds
- Automatically labels the regions


## Inclusion criteria

- Greylevel thresholding
- Greylevel distribution model
- Use mean $\mu$ and standard deviation $\sigma$ in seed region:
- Include if $(I(x, y)-\mu)^{2}<(n \sigma)^{2}$. Eg: $n=3$.
- Can update the mean and standard deviation after every iteration.
- Color or texture information

Inclusion criteria ?

e.g. (a.l+b. $x+c . y+d)^{2}<t h r e s h o l d$ (keep refitting $a, b, c$ to included pts)


## Snakes

- A snake is an active contour
- It is a polygon, i.e., an ordered set of points joined up by lines
- Each point on the contour moves away from the seed while its image neighborhood satisfies an inclusion criterion
- Often the contour has smoothness constraints


## Snakes

- The algorithm iteratively minimizes an energy function:
- $\mathrm{E}=\mathrm{E}_{\text {tension }}+\mathrm{E}_{\text {stiffress }}+\mathrm{E}_{\text {image }}$
- See Kass, Witkin, Terzopoulos, IJCV 1988


## Example



## Interim Summary

- Segmentation is hard
- But it is easier if you define the task carefully
- Is the segmentation task binary or continuous?
- What are the regions of interest?
- How accurately must the algorithm locate the region boundaries?
- Research problems remain!


## Foreground-Background segmentation

Roundabout example

- Input

- Output


## ETH



## Distance Measures

Plain Background-subtraction metric:

$$
\begin{aligned}
& \mathbf{I}_{\alpha}=\left|\mathbf{I}-\mathbf{I}_{b g}\right|>\mathbf{T} \\
& \mathbf{T}=\left[\begin{array}{lll}
2020 & 10
\end{array}\right] \quad \text { (for example) } \\
& \mathbf{I}_{\mathbf{b g}}=\text { Background Image }
\end{aligned}
$$

## Where Does $\mathrm{I}_{\mathrm{bg}}$ Come From?



When possible, fit a Gaussian model per pixel, just as we did for an entire green-screen:

- mean $\mu \rightarrow \mathrm{I}_{\mu}$
- standard deviation $\sigma \rightarrow \mathrm{I}_{\Sigma}$


Note: Outdoor backgrounds change over time!

## Distance Measures

Plain Background-subtraction metric:

$$
\begin{aligned}
& \mathbf{I}_{\alpha}=\left|\mathbf{I}-\mathbf{I}_{b g}\right|>\mathbf{T} \\
& \mathbf{T}=\left[\begin{array}{ll}
202010
\end{array} \quad\right. \text { (for example) } \\
& \mathbf{I}_{\mathrm{bg}}=\text { Background Image }
\end{aligned}
$$

or better
$\mathbf{I}_{\alpha}=\sqrt{\left(\mathbf{I}-\mathbf{I}_{b g}\right)^{T} \Sigma^{-1}\left(\mathbf{I}-\mathbf{I}_{b g}\right)}>\mathbf{T}=4$ (for example)
$\Sigma$ background pixel appearance covariance matrix (computed separately for each pixel, from many examples) (sometimes need more than one Gaussian, use Gaussian Mixture Models)


## A Word About Shadows



## ЕН

## A Word About Shadows



## Adding spatial relations

Markov Random Fields

- Markov chains have 1D structure
- At every time, there is one state.
- This enabled use of dynamic programming.
- Markov Random Fields break this 1D structure.
- Field of sites, each of which has a label, simultaneously.
- Label at one site dependent on others, no 1D structure to dependencies.
- This means no optimal, efficient algorithms, except for 2-label problems.


## Markov Random Fields



Cost to assign a label to each pixel

Cost to assign a pair of labels to connected pixels
$\operatorname{Energy}(\mathbf{y} ; \theta, d a t a)=\sum_{i} \psi_{1}\left(y_{i} ; \theta\right.$, data $)+\sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$
Slides from Derek Hoiem

## Markov Random Fields

- Example: "label smoothing" grid Unary potential


Energy $(\mathbf{y} ; \theta$, data $)=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right)_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$

## Solving MRFs with graph cuts



## Solving MRFs with graph cuts



## Foreground-Background segmentation

The code does the following:

- background RGB Gaussian model training (from many images)
- shadow modeling (hard shadow \& soft shadow).

- Graphcut foreground-background segmentation


## Foreground-Background segmentation



Background Image Foreground Image


Background Weight

Graphcut (non-black) Blob finding (white)

## ETH

## Foreground-Background segmentation



## ETH

Inclusion criteria ?

e.g. (a.l+b. $x+c . y+d)^{2}<t h r e s h o l d$ (keep refitting $a, b, c$ to included pts)


## GrabCut - interactive foreground segmentation




## Problem



## Fast \& Accurate ?



Slides from Carsten Rother (MSR)

## What GrabCut does



## Graph Cuts

## Boykov and Jolly (2001)

## Foreground

Image


Cut: separating source and sink; Energy: collection of edges
Min Cut: Global minimal energy in polynomial time

## ETH

## Iterated Graph Cut



## User Initialisation

> | K-means for learning |
| :---: |
| colour distributions |

## Graph cuts to infer the segmentation

## ETH

## Iterated Graph Cuts



Result


Energy after each Iteration

## ETH

Slides from Carsten Rother (MSR)

## Colour Model



Gaussian Mixture Model (typically 5-8 components)

## ETH

## Moderately straightforward examples



## GrabCut completes automatically

## Difficult Examples

Camouflage \&
Low Contrast

Initial
Rectangle


Initial Result


Fine structure


No telepathy


## Evaluation - Labelled Database



Available online: http://research.microsoft.com/vision/cambridge/segmentation/ ETH Slides from Carsten Rother (MSR)

## Comparison

## Boykov and Jolly (2001) <br> GrabCut




Error Rate: 0.72\%
Slides from Carsten Rother (MSR)

## Border Matting



## ETH

## Natural Image Matting



## Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

## Border Matting



Fit a smooth alpha-profile with parameters

## EHH

## Dynamic Programming



Noisy alpha-profile

Regularisation
Slides from Carsten Rother (MSR)

## Results




# Switching to Spatial-domain only: 

## Morphological Operations

## What Are Morphological Operators?

- Local pixel transformations for processing region shapes
- Most often used on binary images
- Logical transformations based on comparison of pixel neighborhoods with a pattern.


## Simple Operations - Examples

- Eight-neighbor erode
- a.k.a. Minkowsky subtraction
- Erase any foreground pixel that has one eightconnected neighbor that is background.


## 8-neighbor erode



Erode $\times 1$


Erode $\times 2$


Erode $\times 5$

## 8-neighbor dilate

- Eight-neighbor dilate
- a.k.a. Minkowsky addition
- Paint any background pixel that has one eight-connected neighbor that is foreground.


## 8-neighbor dilate




Dilate $\times 1$


Dilate $\times 2$


Dilate $\times 5$

## Why?

- Smooth region boundaries for shape analysis.
- Remove noise and artefacts from an imperfect segmentation.


## Structuring Elements

- Morphological operations take two arguments:
- A binary image
- A structuring element.
- Compare the structuring element to the neighborhood of each pixel.
- This determines the output of the morphological operation.


## Structuring elements

- The structuring element is also a binary array
- A structuring element has an origin

| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |


| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 0 | 1 | 0 |


| 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |

## Binary images as sets

- We can think of the binary image and the structuring element as sets containing the pixels with value 1.

| 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$
I=\{(1,1),(2,1),(3,1),(2,2),(3,2),(4,4)\}
$$

## Some set notation

- Union and intersection:
$I_{1} \cup I_{2}=\left\{\underline{x}: \underline{x} \in I_{1}\right.$ or $\left.\underline{x} \in I_{2}\right\}$
$I_{1} \cap I_{2}=\left\{\underline{x}: \underline{x} \in I_{1}\right.$ and $\left.\underline{x} \in I_{2}\right\}$
- Complement

$$
I^{C}=\{\underline{x}: \underline{x} \notin I\}
$$

- Difference
$I_{1} \backslash I_{2}=\left\{\underline{x}: \underline{x} \in I_{1}\right.$ and $\left.\underline{x} \notin I_{2}\right\}$
- We use $\phi$ for the empty set.


## Fitting, Hitting and Missing

- $S$ fits $/$ at $\underline{x}$ if

$$
\{\underline{y}: \underline{y}=\underline{x}+\underline{s}, \underline{s} \in S\} \subset I
$$

- $S$ hits / at $\underline{x}$ if

$$
\{\underline{y}: \underline{y}=\underline{x}-\underline{s}, \underline{s} \in S\} \cap I \neq \phi
$$

- $S$ misses / at $\underline{x}$ if

$$
\{\underline{y}: \underline{y}=\underline{x}-\underline{s}, \underline{s} \in S\} \cap I=\phi
$$

## Fitting, Hitting and Missing

Image

| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

element

| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 0 | 1 | 0 |

## Erosion

- The image $E=I \ominus S$ is the erosion of image $I$ by structuring element $S$.
$E(\underline{x})=\left\{\begin{array}{l}1 \text { if } S \text { fits } I \text { at } \underline{x} \\ 0 \text { otherwise }\end{array}\right.$
$E=\{\underline{x}: \underline{x}+\underline{s} \in I$ for every $s \in S\}$


## Example



| 1 | 1 | 1 | 1 | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  <br> Structuring <br> element | 1 | 1 | 1 | 1 | 1 |
|  | 1 | 1 | 1 | 1 |  |
|  | 1 | 1 | 1 | 1 |  |
|  | 1 | 1 | 1 | 1 |  |

## Example



Structuring element

| 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |

## Dilation

- The image $D=I \oplus S$ is the dilation of image $I$ by structuring element $S$.

$$
\begin{aligned}
D(\underline{x}) & =\left\{\begin{array}{l}
1 \text { if } S \text { hits } I \text { at } \underline{x} \\
0 \text { otherwise }
\end{array}\right. \\
D & =\{\underline{x}: \underline{x}-\underline{s}, \underline{y} \in I \text { and } \underline{s} \in S\}
\end{aligned}
$$

## Example



| 1 | 1 | 1 | 1 | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  <br> Structuring <br> element | 1 | 1 | 1 | 1 | 1 |
|  | 1 | 1 | 1 | 1 |  |
|  | 1 | 1 | 1 | 1 |  |
|  | 1 | 1 | 1 | 1 |  |

## Example



Structuring

| 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |

## Opening and Closing

- The opening of $I$ by $S$ is

$$
I \circ S=(I \ominus S) \oplus S
$$

- The closing of $I$ by $S$ is

$$
I \bullet S=(I \oplus S) \ominus S
$$

## Example


close


| 1 | 1 | 1 | 1 | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\|c\|$ <br> Structuring <br> element <br> open | 1 | 1 | 1 | 1 |
|  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |  |
| 1 | 1 | 1 | 1 | 1 |  |

## Morphological filtering

- To remove holes in the foreground and islands in the background, do both opening and closing.
- The size and shape of the structuring element determine which features survive.
- In the absence of knowledge about the shape of features to remove, use a circular structuring element.


## Granulometry

- Provides a size distribution of distinct regions or "granules" in the image.
- We open the image with increasing structuring element size and count the number of regions after each operation.
- Creates a "morphological sieve"


## Granulometry

```
def granulo(I, T, maxRad):
B = (I > T) # Segment the image I
# Open the image at each structuring element size up to a
# maximum and count the remaining regions.
numRegions = []
for x in range(1, maxRad + 1):
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(x, x))
    O = cv2.morphologyEx(B, cv2.MORPH_OPEN, kernel)
    numComponents, _ = cv2.connectedComponents(O)
    numRegions.append (numComponents)
return numRegions
```


## Disc(59)

## Number of Regions



## Granulometric Pattern Spectrum



## Hit-and-miss transform

- Searches for an exact match of the structuring element.
- $H=I \otimes S$ is the hit-and-miss transform of image I by structuring element $S$.
- Simple form of template matching.


## Hit-and-miss transform

| 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |


$\otimes$| 1 | 0 | 1 |
| :--- | :--- | :--- |


$=$| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |


| 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |


$\otimes$| 1 | 0 |
| :---: | :---: |
| $*$ | 1 |


$=$| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

## Upper-Right Corner Detector



## Thinning and Thickening

- Defined in terms of the hit-and-miss transform:
- The thinning of $I$ by $S$ is

$$
I \oslash S=I \backslash(I \otimes S)
$$

- The thickening of $I$ by $S$ is


$$
I \odot S=I \cup(I \otimes S)
$$

- Dual operations:

$$
(I \odot S)^{C}=I^{C} \oslash S
$$

## Sequential Thinning/Thickening

- These operations are often performed in sequence with a selection of structuring elements $S_{1}, S_{2}, \ldots, S_{n}$.
- Sequential thinning:

$$
I \oslash\left\{S_{i}: i=1, \ldots, n\right\}=\left(\left(\left(I \oslash S_{1}\right) \oslash S_{2}\right) \ldots \oslash S_{n}\right)
$$

- Sequential thickening:

$$
I \odot\left\{S_{i}: i=1, \ldots, n\right\}=\left(\left(\left(I \odot S_{1}\right) \odot S_{2}\right) \ldots \odot S_{n}\right)
$$

## Sequential Thinning/Thickening

- Several sequences of structuring elements are useful in practice
- These are usually the set of rotations of a single structuring element.
- Sometimes called the Golay alphabet.

| 0 | 0 | 0 |
| :--- | :--- | :--- |
|  | 1 |  |
| 1 | 1 | 1 |


|  | 0 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
|  | 1 |  |



| 0 |  | - |
| :--- | ---: | ---: |
| 0 | - | - |
| 0 |  | - |

## Sequential Thinning

- See morphologyEx in python.


0 iterations


1 iteration


2 iterations


5 iterations


Inf iterations

## Sequential Thickening


iteration


## Skeletonization and the Medial

 Axis Transform- The skeleton and medial axis transform (MAT) are stick-figure representations of a region $X \subset$ $\mathfrak{R}^{2}$.
- Start a grassfire at the boundary of the region.
- The skeleton is the set of points at which two fire fronts meet.


## Skeletons



## ETH

## Medial axis transform

- Alternative skeleton definition:
- The skeleton is the union of centres of maximal discs within $X$.
- A maximal disc is a circular subset of $X$ that touches the boundary in at least two places.
- The MAT is the skeleton with the maximal disc radius retained at each point.


## Medial axis transform



## ETH

## Skeletonization using morphology

- Use structuring element $B=$| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 0 | 1 | 0 |
- The $n$-th skeleton subset is

$$
S_{n}(X)=\left(X \ominus_{n} B\right) \backslash\left[\left(X \ominus_{n} B\right) \circ B\right]
$$

$\Theta_{n}$ denotes $n$
successive erosions.

- The skeleton is the union of all the skeleton subsets:

$$
S(X)=\bigcup_{n=1}^{\infty} S_{n}(X)
$$

## Reconstruction

- We can reconstruct region $X$ from its skeleton subsets:

$$
X=\bigcup_{n=0}^{\infty} S_{n}(X) \oplus_{n} B
$$

- We can reconstruct $X$ from the MAT.
- We cannot reconstruct $X$ from $S(X)$.


DiFi: Fast 3D Distance Field Computation Using Graphics Hardware Sud, Otaduy, Manocha, Eurographics 2004

## MAT in 3D


from Transcendata Europe Medial Object Price, Stops, Butlin Transcendata Europe Ltd

## Applications and Problems

- The skeleton/MAT provides a stick figure representing the region shape
- Used in object recognition, in particular, character recognition.
- Problems:
- Definition of a maximal disc is poorly defined on a digital grid.
- Sensitive to noise on the boundary.
- Sequential thinning output sometimes preferred to skeleton/MAT.


## Example

## Skeletons:



Thinned:


## Kanizsa Triangle



## Next Week:

Innage Features

