Visual Computing: Convolution and Filtering

Prof. Marc Pollefeys

Last time: Segmentation

Neighborhood

What is image filtering?

 Modify the pixels in an image based on some function of a local neighborhood of the pixels.

Local image data

Modified image data

Linear Shift-Invariant Filtering

- About modifying pixels based on <u>neighborhood</u>.
 Local methods simplest.
- Linear means <u>linear combination</u> of neighbors.
 Linear methods simplest.
- Shift-invariant means doing the same for each pixel.
 Same for all is simplest.
- Useful to:
 - Low-level image processing operations
 - Smoothing and noise reduction.
 - Sharpen.
 - Detect or enhance features.

• L is *linear* operation if

$$L\left[\alpha I_1 + \beta I_2\right] = \alpha L\left[I_1\right] + \beta L\left[I_2\right]$$

Linear Operations: Weighted Sum

 Output I' of linear image operation is a weighted sum of each pixel in the input I

$$I'_{j} = \sum_{i=1}^{N} \alpha_{ij} I_{i}, j = 1...N$$

(note: N=wxh)

Linear operations can be written:

$$I'(x, y) = \sum_{(i,j)\in N(x,y)} K(x, y; i, j)I(i, j)$$

- *I* is the input image; *I'* is the output of the operation.
- K is the kernel of the operation. N(m,n) is a neighbourhood of (m,n).

Linear operations can be written:

$$I'(x, y) = \sum_{(i,j)\in N(x,y)} K(x, y; i, j)I(i, j)$$

- / is the input image: /' is the output of the ope
 ope Operations are "shift-invariant" if K
 K is does NOT depend on (x,y):
 - using same weights everywhere!

nei

Correlation

(e.g. template matching)

Correlation

• Linear operation of *correlation*:

$$I' = K \circ I$$

$$I'(x, y) = \sum_{(i,j) \in N(x,y)} K(i,j)I(x+i, y+j)$$

Represent the linear weights as an image, K

Convolution

(e.g. point spread function)

Kernel

K(-1,-1)	K(0,-1)	K(1,-1)
K(-1,0)	K(0,0)	K(1,0)
K(-1,1)	K(0,1)	K(1,1)

$$I'(x,y) = K(1,1)I(x-1,y-1) + K(0,1)I(x,y-1) + K(-1,1)I(x+1,y-1) + K(1,0)I(x-1,y) + K(0,0)I(x,y) + K(-1,0)I(x+1,y) + K(1,-1)I(x-1,y+1) + K(0,-1)I(x,y+1) + K(-1,-1)I(x+1,y+1)$$

Convolution

• Linear operation of *convolution*:

$$I' = K * I$$

$$I'(x, y) = \sum_{(i,j) \in N(x,y)} K(i, j)I(x - i, y - j)$$

- Represent the linear weights as an image, K
- Same as correlation, but with kernel reversed

Correlation

$$I'(x, y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i, j) I(x + i, y + j)$$

Convolution

$$I'(x, y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i, j)I(x - i, y - j)$$

$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(-i, -j)I(x + i, y + j)$$

So if K(i,j) = K(-i, -j), then Correlation == Convolution

Linear Filtering (warm-up)

Original

0	0	0
0	1	0
0	0	0

Linear Filtering (warm-up)

Original

Filtered (no change)

Original

0	0	0
1	0	0
0	0	0

?

(use convolution)

Original

0	0	0
1	0	0
0	0	0

(use convolution)

Shifted left By 1 pixel

Original

1	1	1
1	1	1
1	1	1

Original

Original

<u>1</u> 9	1	1	1
	1	1	1
	1	1	1

?

Original

Blur (with a box filter)

Original

(Note that filter sums to 1)

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Correlation

(e.g. Template-matching)

$$I' = \sum_{i=-k}^{k} \sum_{i=-k}^{k} K(i, j) I(x+i, y+j)$$

(matlab default)

Convolution

(e.g. point spread function)

$$I' = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i,j)I(x+i,y+j) \qquad I' = \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(i,j)I(x-i,y-j)$$

$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(-i,-j)I(x+i,y+j)$$
(matlab default)
$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} K(-i,-j)I(x+i,y+j)$$

Example

```
K=ones(9,9);
I2=conv2(I,K);
```


Example

$$K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Yucky details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - vary filter near edge

Separable Kernels

- Separable filters can be written K(m,n) = f(m)g(n)
- For a rectangular neighbourhood with size (2M+1)x(2N+1),

$$I'(m,n) = f * (g * I(N(m,n)))$$

$$I''(m,n) = \sum_{j=-N}^{N} g(j)I(m,n-j)$$

$$I'(m,n) = \sum_{i=-M}^{M} f(i)I''(m-i,n)$$

Separable Kernels

- Separable filters can be written K(m,n) = f(m)g(n)
- For a rectangular neighbourhood with size (2M+1)x(2N+1),

$$I'(m,n) = f * (g * I(N(m,n)))$$

$$I''(m,n) = \sum_{j=-N}^{N} g(j)I(m,n-j)$$

computational advantage?

$$I'(m,n) = \sum_{i=-M}^{M} f(i)I''(m-i,n)$$

Smoothing Kernels (Low-pass filters)

Mean filter:
$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Weighted smoothing filters: $\frac{1}{10}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{16}\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Gaussian Kernel

 Idea: Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$5 \times 5$$
, $\sigma = 1$

Constant factor at front makes volume sum to 1

Smoothing with a Gaussian

Smoothing with a box filter

Gaussian Smoothing Kernels

$$g(x, y) = \frac{1}{2\pi\sigma^2} \exp \left[\frac{-(x^2 + y^2)}{2\sigma^2} \right]$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-x^2}{2\sigma^2}\right] \qquad \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-y^2}{2\sigma^2}\right]$$
$$= g(x)g(y)$$

Separable!

Gaussian Smoothing Kernels

- Amount of smoothing depends on σ and window size.
- Width $> 3\sigma$

7x7;
$$\sigma$$
 = 1.

19x19;
$$\sigma$$
=1.

Scale Space

• Convolution of a Gaussian with standard deviation σ with itself is a Gaussian standard deviation $\sigma\sqrt{2}$.

 Repeated convolution by a Gaussian filter produces the scale space of an image.

Scale Space Example

11x11; σ =3.

Gaussian Smoothing Kernel Top-5

- 1. Rotationally symmetric
- 2. Has a single lobe
 - Neighbor's influence decreases monotonically
- 3. Still one lobe in frequency domain
 - No corruption from high frequencies
- 4. Simple relationship to σ
- 5. Easy to implement efficiently

Differential Filters

Prewitt operator:

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel operator:

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

High-pass filters

Laplacian operator:
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

High-pass filter:

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

High-pass filters

Laplacian High pass

Differentiation and convolution

 Recall, for 2D function, f(x,y):

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

 This is linear and shift invariant, so must be the result of a convolution. We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

(which is obviously a convolution)

Vertical gradients from finite differences

Filters are templates

- Filter at some point can be seen as taking a dotproduct between the image and some vector
- Filtering the image is a set of dot products

- filters look like the effects they are intended to find
- filters find effects they look like

Image Sharpening

- Also known as Enhancement
- Increases the high frequency components to enhance edges.
- $l' = l + \alpha |k^*l|$, where k is a high-pass filter kernel and α is a scalar in [0,1].

Sharpening Example

48

original lpha =0.5

Integral images

 Integral images (also know as summed-area tables) allow to efficiently compute the convolution with a constant rectangle

$$II(x,y) = \bigcup_{0}^{x} \bigcup_{0}^{y} I(x',y') dx'dy'$$

$$A=II(1)$$
 $A+C=II(3)$
 $A+B=II(2)$ $A+B+C+D=II(4)$

D=II(4)-II(2)-II(3)+II(1)

Viola-Jones cascade face detection

Very efficient face detection using integral images

Also possible along diagonal

Thursday: Image Features

