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Last time: Segmentation
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What 1s image filtering?

* Modily the pixels in an image based on
some function of a local neighborhood of

the pixels.
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Linear Shift-Invariant Filtering

* About modifying pixels based on neighborhood.
Local methods simplest.

* Linear means linear combination of neighbors.
Linear methods simplest.

e Shift-invariant means doing the same for each pixel.
Same for all is simplest.
e Useful to:

— Low-level image processing operations
— Smoothing and noise reduction.
— Sharpen.

— Detect or enhance features.
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Linear Filtering

* Lis linear operation if

Llad, + B,]  =al[l]+ALI,]




Linear Operations: Weighted Sum

* Qutput /' of linear image operation is a
weighted sum of each pixel in the input /

N
|;=;aij|i,1:1...|\|

(note: N=wxh)




Linear Filtering

* Linear operations can be written:
', y) = Y KX v, DG, §)
(i, i)eN(x,y)

* |is the input image; I’ is the output of the
operation.

e Kisthe kernel of the operation. N(m,n) is a
neighbourhood of (m,n).
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Linear Filtering

* Linear operations can be written:

' y) = K yi i DIGL )

(I, eN(x,y)

. [ist;&ianuj'_Lm;aLl’_is_ﬂggouLm_n'_nf_tb%
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Operations are “shift-invariant” if K
does NOT depend on (X,y):
using same weights everywhere!
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Correlation
(e.g. template matching) R cal//
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o(i,jj= cul(i-1,j-1) + cu2l(i-1,j) + cizI(i-1,j+1) +
C21 1(i,}-1) + Ca2l(i,))  + Casl(ij+l) +
Car I(i+1,j-1) + c32 I(i+1,j)) + Css I(i+1,j+1)




Correlation

* Linear operation of correlation:
/
|' =Kol

'(x,y)=" D, K@, I(x+i,y+j)
_ (i,§)eN (x,y) Y

(

* Represent the linear weights as an image, K
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Convolution

(e.g. point spread function)

c—

Kernel

s

" (x,yJFK(1,1)I(x-1,y-1) + K(0,1)I(x,y-1) + K(-1,1)I(x+1,y-1)
+ K(1,0)I(x-1,y) + K(0,0)I(x,y) + K(-1,0)I(x+1,y)
+ K(1,-1)I(x-1,y+1) + K(O,-1)I(x,y+1)+ K(-1,-1)I(x+1,y+1)
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Convolution

* Linear operation of convolution:
"' = K * |
'(x, y) = D K@, Pl(x—i,y - j)

\ (i, })eN (x,y) Y

(

* Represent the linear weights as an image, K
e Same as correlation, but with kernel reversed
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Correlation

1'(X, y) = ZZK(I DI+, y + )

Convolution
1'(, y) = Zi =iy - )

ZZ —i—PDIX+i,y+ j)

So if K(i,)) = K(-i, -j), then Correlation == Convolution




Linear Filtering
(warm-up)
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Linear Filtering
(warm-up)
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(no change)
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Linear Filtering
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Original

(use convolution)
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Linear Filtering
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Original Shifted left

(use convolution) By 1 pixel
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Linear Filtering

Original
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—
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Linear Filtering

Original

 —
—
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Linear Filtering
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Linear Filtering

. 1111
5 1111
1111
Original Blur (with a
box filter)
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Linear Filtering

010]0 1[1[1
0[2[0] = -[1[1]1 )
0[0]0 1[1[1

(Note that filter sums to 1)
Original
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Linear Filtering

0[0l0] ,[1[2lZ
0[2]0] = :[1[1]1
000 11111
Original Sharpening filter
- Accentuates differences with local
average
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Sharpening

before after
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Correlation

(e.g. Temp

ate-matching)

Z Z K@, PIX+i,y+ )

jJ=—k i=—

ETH

(matlab default)

Convolution

(e.g. point spread function)
> .

s

ZZK(I DI(x=i,y—j)

jkl

= ZZ KE=DIx+1y + 1)




Example

K=ones (9, 9) ;

I2=conv2 (I,K);







Yucky details

 What about near the edge?

— the filter window falls off the edge of the image

— need to extrapolate r

— methods: , "
 clip filter (black)
e wrap around
* copy edge

* reflect across edge
 vary filter near edge

ﬂ Steve Marschner e
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Separable Kernels

* Separable filters can be written

K(m,n) = flm)g(n)
* For a rectangular neighbourhood with size

(2M+1)x(2N+1),
' /(mun) =] (g =T (N (m.n))

1"(m,n) = ZQ(J) (m,n—J)

; MZ -

l'(m,n)|= f( N'(m—1,n)
ETH -




Separable Kernels

* Separable filters can be written

K(m,n) = flm)g(n)
* For a rectangular neighbourhood with size

(2M+1)x(2N+1),
1'(m,n) =|f *(g *1(N(m,n)))

1"(m,n) = ZQ(J) (m,n—J)

computational advantage?
l'(m,n) f( N'(m—1,n)
ETH »
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Smoothing Kernels

(Low-pass filters)

Mean filter: 1

Weighted 1
smoothing filters: 1g
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Gaussian Kernel

* |dea: Weight contributions of neighboring pixels
by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1

1 @24y

GO. = e 202
27ma2

e Constant factor at front makes volume sum to 1

m Slide credit: Christopher Rasmussen




Smoothing with a Gaussian




Smoothing with a box filter




Gaussian Smoothing Kernels

1 - (x2 + yz)_
X, = ex
9(% ) 210’ p_ 20° |
L exp__ X L exp| —
\ 27r0¢ 20 ; | 27O 20°
= g(x)g(y)
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Gaussian Smoothing Kernels

 Amount of smoothing depends on o and
window size.

e Width >30o




Scale Space

e Convolution of a Gaussian with standard

deviation owith itself is a Gaussian standard
deviation V2.

* Repeated convolution by a Gaussian filter
produces the scale space of an image.




Scale Space Example

11x11; o =3.




Gaussian Smoothing Kernel Top-5

1. Rotationally symmetric

2. Has asingle lobe
- Neighbor’ s influence decreases monotonically

3. Still one lobe in frequency domain

- No corruption from high frequencies
4. Simple relationship to o
5. Easy to implement efficiently
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Differential Filters

-1 0 1
Prewitt 1 0
operator: 10

-1 0 1]
Sobel 2 0
operator: 101




High-pass filters

1
Laplacian operator: 1 4 1
- 1 —
-1 -1 -1
ligh-pass filter: -1 8 -1

-1 -1 -1




High-pass filters

Laplacian High pass



Differentiation and convolution

Recall, for 2D

function, f(x,y): * We could
approximate this as

al(:hm(f(x-l-g,y)_&’y)j @fo(an,y)_f(xn,y)
ox 6;_)0. C° & ox Ax
* Thisis linear and
shift invariant, so (which is obviously a
must be the result of ~ convolution)
a convolution. 11 1

Slide credit: D.A. Forsyth



Vertical gradients from finite
differences




Filters are templates

Filter at some point can be
seen as taking a dot-
product between the image
and some vector

Filtering the image is a set
of dot products

r

filters look like the effects
they are intended to find

- filters find effects they look
like

46
Slide credit: D.A. Forsyth



Image Sharpening

 Also known as Enhancement

* |Increases the high frequency components to
enhance edges.

e I”’=1+ alk*I|, where k is a high-pass filter
kernel and «is a scalar in [0,1].




Sharpening Example

original a=0.5

48



Integral images

* Integral images (also know as summed-area tables) allow to
efficiently compute the convolution with a constant rectangle

A B
C D
xy) : )
 y A=1I(1) A+C=I1(3)
nxy)= 0 0 1(x',y")dx'dy' A+B=II(2)  A+B+C+D=lI(4)
0 0

D=I11(4)-11(2)-11(3)+11(1)

Figures from Viola and Jones 2001



Viola-Jones cascade face detection

* Very efficient face detection using integral images

E’H Figures from Viola and Jones 2001




* Also possible along diagonal

=

rsat(x,y)

(b)
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