
Visual Computing:

Fourier Transform

Prof. Marc Pollefeys

Video

file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04a_FourierTransform/bladerunnerphoto.flv

2

Correlation
(e.g. Template-matching)

Convolution
(e.g. point spread function)

(,) (,)
k k

j k i k

I K i j I x i y j
=− =−

 = + +  (,) (,)
k k

j k i k

I K i j I x i y j
=− =−

 = − − 

?

(matlab default)

Last week

Last lecture

• Edges

– Maximal gradients

– Zero-crossing Laplacian

• Hough transform

• Corners

– Maximal difference with neighbors

Canny edge detection

() () ()

() () ()

2

(,) (,)

2

(,) (,)

, , ,

, , ,

x x y

x y window x y window

x y y

x y window x y window

f x y f x y f x y

f x y f x y f x y

 

 

 
 

=  
 
 

 

 
M

Scale Invariant Feature Transform (SIFT)

Lowe ICCV99

Visual Computing:

Fourier Transform

Prof. Marc Pollefeys

6

Aliasing

• Can’t shrink an image by taking every second
pixel

• If we do, characteristic errors appear

– In the next few slides

– Typically, small phenomena look bigger; fast
phenomena can look slower

– Common phenomenon

• Wagon wheels rolling the wrong way in movies

• Checkerboards misrepresented in ray tracing

• Striped shirts look funny on color television
example image

example video

file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04a_FourierTransform/aliasing.jpg
file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04a_FourierTransform/aliasingwheel.flv

7

8

Constructing a pyramid by

taking every second pixel

leads to layers that badly

misrepresent the top layer

9

Open questions

• What causes the tendency of differentiation to
emphasize noise?

• In what precise respects are discrete images
different from continuous images?

• How do we avoid aliasing?

• General thread: a language for fast changes

The Fourier Transform

10



F g x,y()() u,v()= g x, y()e− i2 ux+vy()
dxdy

R 2



The Fourier Transform

• Represent function on a new basis

– Think of functions as vectors, with many components

– We now apply a linear transformation to transform the basis

• dot product with each basis element

• In the expression, u and v select the basis element, so a
function of x and y becomes a function of u and v

• basis elements have the form



e
−i2 ux+vy()

fF U= vectorized image

Fourier transform base,
also possible Wavelets, steerable pyramids, etc.

transformed image

= cos 2(ux+vy) − i sin2 (ux+vy)

Discrete FT:

11

Fourier transform and linear systems

• Basis functions of Fourier transform are
eigenfunctions of linear systems

(or why Electrical Engineers love the Fourier transform)

linear system

12

Fourier basis element

example, real part

Fu,v(x,y)

Fu,v(x,y)=const. for

(ux+vy)=const.

Vector (u,v)

• Magnitude gives frequency
• Direction gives orientation.



e
−i2 ux+vy()

13

Here u and v

are larger than

in the previous

slide.

14

And larger still...

Fourier basis functions



e
−i2 ux+vy()

= cos 2(ux+vy) − i sin2 (ux+vy)

(note: basis functions are global)

16

Phase and Magnitude
• Fourier transform of a real function is complex

– difficult to plot, visualize

– instead, we can think of the phase and magnitude of the
transform

• Phase is the phase of the complex transform

• Magnitude is the magnitude of the complex transform

• Curious fact

– all natural images have about the same magnitude transform

– hence, phase seems to matter, but magnitude largely doesn’t

• Demonstration

– Take two pictures, swap the phase transforms, compute the
inverse - what does the result look like?

17

18

This is the

magnitude
transform

of the

cheetah pic

19

This is the

phase
transform

of the

cheetah pic

20

21

This is the

magnitude
transform

of the

zebra pic

22

This is the

phase
transform

of the

zebra pic

23

Reconstruction

with zebra
phase, cheetah

magnitude

24

Reconstruction

with cheetah
phase, zebra

magnitude

25

26

27

Various Fourier Transform Pairs

• Important facts
– The Fourier transform is linear

– There is an inverse FT

– scale function down  scale transform up

i.e. high frequency = small details

– The FT of a Gaussian is a Gaussian.

compare to box function transform

Ff 1−= U

Fourier Transform

of important functions

spatial domain frequency domain

*

* see in a few slides

29

Convolution theorem

• The convolution theorem
– The Fourier transform of the convolution of two functions is the

product of their Fourier transforms

– The Fourier transform of the product of two functions is the
convolution of the Fourier transforms

()gfGF **. U=

()gfGF .** U=

(cfr. filtering)

(cfr. sampling)

30

Sampling

• Go from continuous world to discrete world,
from function to vector

• Samples are typically measured on regular
grid

31

Sampling in 2D does the same thing, only in 2D. We’ll assume that

these sample points are on a regular grid, and can place one at each

integer point for convenience.

• We want to be able to
approximate integrals
sensibly

• Leads to

– the delta function

– model on right

32

A continuous model for a sampled
function



Sample2D f (x,y)()= f (x, y) (x − i, y − j)
i=−




i=−





= f (x,y)  (x − i, y − j)
i=−




i=−





j

j



F g x,y()() u,v()= g x, y()e− i2 ux+vy()
dxdy

R 2

remember:

33

Delta function

• limit to infinity

of constant area

function:

h2

1
−

h2

1

h

34

A continuous model for a sampled
function

• We want to be able to
approximate integrals
sensibly

• Leads to

– the delta function

– model on right



Sample2D f (x,y)()= f (x, y) (x − i, y − j)
i=−




i=−





= f (x,y)  (x − i, y − j)
i=−




i=−





j

j

35

The Fourier transform of a sampled
signal



F Sample 2D f (x,y)()()= F f (x, y) (x − i,y − j)
i=−




i=−














= F f (x,y)()**F (x − i, y − j)
i=−




i=−














= F u − i,v − j()
j=−




i=−





(notice f(x,y) is a continuous function and we use

the continuous form of the Fourier transform)

36

multiply convolve

37

multiply convolve

aliasing!

Proper sampling

Slide from Dani Lischinski

39

Smoothing as low-pass filtering

• The message of the FT is that high frequencies lead to
trouble with sampling.

• Solution: suppress high frequencies before sampling

– multiply the FT of the signal with something that suppresses
high frequencies

– or convolve with a low-pass filter

• A filter whose FT is a box is bad, because the filter kernel has
infinite support

• Common solution: use a Gaussian

– multiplying FT by Gaussian is equivalent to convolving image
with Gaussian.

40

Sampling without smoothing.
Top row shows the images, sampled at every second pixel to get the next;

bottom row shows the magnitude spectrum of these images.

41

Sampling with smoothing.
Top row shows the images. We get the next image by smoothing the image

with a Gaussian with sigma 1 pixel, then sampling at every second pixel to

get the next; bottom row shows the magnitude spectrum of these images.

42

Sampling with smoothing.
Top row shows the images. We get the next image by smoothing the image

with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel

to get the next; bottom row shows the magnitude spectrum of these images.

Nyquist sampling theorem

Computation of 2D Fourier Transform

• 2D Fourier Transform can be compute as sequence of
1D Fourier transforms

• Fast Fourier Transform (FFT) can compute Discrete
Fourier Transform very fast (use symmetries) fF U=

F(g(x, y))(u,v) = g(x, y)e-i2p (ux+vy) dxdyòò
= g(x, y)e-i2p (ux) dxò()e-i2p (vy)ò dy

What went wrong?

color sampled at half-resolution!

Signal reconstruction

Harmon & Julesz 1973 Dali 1976

Image reconstruction: pixelization

• Who is this?

Reconstruction filters

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Square pixels

spatial Fourier

spatial Fourier spatial Fourier

spatial Fourier

Bilinear interpolation

Gaussian reconstruction filter

Perfect reconstruction filter

Convolution of Box with Box

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Designing the

‘perfect’
low-pass filter

Filtering in Fourier domain

file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04b_Fourier/fourier.flv

Defocus blurring

Motion blurring

Image restoration problem

Image Restoration: Motion Blur

Avoiding noise amplification

Fluttered shutter

Space-time super-resolution
Shechtman et al. PAMI05

Space-time super-resolution
Shechtman et al. PAMI05

…

Space-time super-resolution
Shechtman et al. PAMI05

time super-resolution works better than space

Spatial super-resolution

• lens+pixel=low-pass filter (desired to avoid aliasing)

• Low-res images = D*H*G*(desired high-res image)

– D: decimate, H:lens+pixel, G: Geometric warp

• Simplified case for translation: LR=(D*G)*(H*HR)
– G is shift-invariant and commutes with H

– First compute H*HR, then deconvolve HR with H

• Super-resolution needs to restore attenuated frequencies
– Many images improve S/N ratio (~sqrt(n)), which helps

– Eventually Gaussian’s double exponential always dominates

Next week:
More transforms…

Eigenfaces Wavelets

	Slide 1: Visual Computing: Fourier Transform
	Slide 2: Correlation (e.g. Template-matching)
	Slide 3: Last lecture
	Slide 4: Scale Invariant Feature Transform (SIFT)
	Slide 5: Visual Computing: Fourier Transform
	Slide 6: Aliasing
	Slide 7
	Slide 8
	Slide 9: Open questions
	Slide 10: The Fourier Transform
	Slide 11: Fourier transform and linear systems
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Fourier basis functions
	Slide 16: Phase and Magnitude
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Various Fourier Transform Pairs
	Slide 28
	Slide 29: Convolution theorem
	Slide 30: Sampling
	Slide 31
	Slide 32: A continuous model for a sampled function
	Slide 33: Delta function
	Slide 34: A continuous model for a sampled function
	Slide 35: The Fourier transform of a sampled signal
	Slide 36
	Slide 37
	Slide 38: Proper sampling
	Slide 39: Smoothing as low-pass filtering
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Nyquist sampling theorem
	Slide 44: Computation of 2D Fourier Transform
	Slide 45: What went wrong?
	Slide 46: Signal reconstruction
	Slide 47: Image reconstruction: pixelization
	Slide 48: Reconstruction filters
	Slide 49: Convolution of Box with Box
	Slide 50
	Slide 51: Filtering in Fourier domain
	Slide 52: Defocus blurring
	Slide 53: Motion blurring
	Slide 55: Image restoration problem
	Slide 56: Image Restoration: Motion Blur
	Slide 57
	Slide 58: Avoiding noise amplification
	Slide 59: Fluttered shutter
	Slide 60: Space-time super-resolution
	Slide 61: Space-time super-resolution
	Slide 62: Space-time super-resolution
	Slide 63: Spatial super-resolution
	Slide 64

