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Last lecture

* Edges
— Maximal gradients
— Zero-crossing Laplacian

* Hough transform
* Corners
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Aliasing

* Can’ tshrink an image by taking every second
pixel

* |f we do, characteristic errors appear

— In the next few slides

— Typically, small phenomena look bigger; fast
phenomena can look slower

— Common phenomenon

* Wagon wheels rolling the wrong way in movies

e Checkerboards misrepresentedin ray tracing
example image

* Striped shirts look funny on color television example video
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Constructinga pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer




Open questions

 What causes the tendency of differentiation to
emphasize noise?

* |[n what precise respects are discrete images
different from continuous images?

* How do we avoid aliasing?

* General thread: alanguage for fast changes
The Fourier Transform
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The Fourier Transform

* Represent function on a new basis

— Think of functions as vectors, with many components

— We now apply a linear transformation to transform the basis

* dot product with each basis element

* |Inthe expression, u and v select the basis element, so a
function of x and y becomes a function of uand v

 basis elements have the form e

—i2 7(ux+vy)

= €0S 2m(ux+vy) — i sin2w (Ux+vy)

F(g(e, ), v)=| f glx, y)e ™ dxdy

Discrete FT. transformed image —

F = Uf.

—— vectorized image
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Fourier transform base,
also possible Wavelets, steerable pyramids, etc.



Fourier transform and linear systems

e Basis functions of Fourier transform are
eigenfunctions of linear systems

(or why Electrical Engineers love the Fourier transform)

' ‘ NN
WiE




Fourier basis element
e—i27z(ux+vy)

example, real part

FU'V(XIY)

Fuv(x,y)=const. for
(ux+vy)=const.

Vector (u,v)
e Magnitude gives frequency
e Direction gives orientation.
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Fourier basis functions

vy)

i2 77 (ux+

vy) — i sin2w (UX+vy)

= C0S 2m(ux+

global)

(note: basis functions are




Phase and Magnitude

Fourier transform of a real function is complex

— difficult to plot, visualize

— instead, we can think of the phase and magnitude of the
transform

Phase is the phase of the complex transform
Magnitude is the magnitude of the complex transform
Curious fact
— all natural images have about the same magnitude transform
— hence, phase seems to matter, but magnitude largely doesn’ t
Demonstration

— Take two pictures, swap the phase transforms, compute the
inverse - what does the result look like?
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This is the
magnitude
transform
of the
cheetah pic
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This is the

magnitude
transform
of the
zebra pic
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Reconstruction
with zebra



Reconstruction
with cheetah
phase, zebra
magnitude










Various Fourier Transform Pairs

* Important facts

— The Fourier transform is linear
— Thereis aninverse FT f =U'F

— scale function down <> scale transform up
i.e. high frequency = small details

— The FT of a Gaussianis a Gaussian.
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compare to box function transform
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Fourier Transform spatial domain frequency domain

of important functions ‘

T

Sin wave

"time" demain frequency domain

Impulse, or "delta" function

d 1/d
Boxcar Sync Function
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* see in a fewslides



Convolution theorem

e The convolution theorem

— The Fourier transform of the convolution of two functions is the
product of their Fourier transforms

F.G=U(f**g) (cfr. filtering)

— The Fourier transform of the product of two functions is the
convolution of the Fourier transforms

F**G=U(f.g) (cfr. sampling)




Sampling

* Go from continuous world to discrete world,
from function to vector

 Samples are typically measured on regular
grid




\@‘/ >
Sampling in 2D does the same thing, only in 2D. We' 1l assume that

these sample points are on a regular grid, and can place one at each
integer point for convenience. A




A continuous model for a sampled
function

* We want to be able to
approximate integrals

sensibly [ remember. j j g(x, 1) " dxdy }
R2
e Leads to

— the delta function
— model on right

Sample., (/(r,)= Y. Z [, 0)8(x =i,y =)

_—ooJ

= f(x, y)Z 25(96 i,y —=J)

[=—00 J:—oo



Delta function

* |imit to infinity
of constant area
function:




A continuous model for a sampled
function

e We want to be able to

approximate integrals
sensibly

e Leadsto
— the delta function
— model on right

Sample., (/(r,)= Y. Z [, 0)8(x =i,y =)

_—ooJ

= f(x, y)Z 25(96 i,y —=J)
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The Fourier transform of a sampled
signal

F(Sample ,,(f(x,»)))= F (f (x.) i i ox=ty=J ))

F(f(x,0))* F(Z > - i,y_,-)j
22

(notice f(x,y) is a continuous function and we use
35 the continuous form of the Fourier transform)



sample

sampled
Signal

Fourier
Transform
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Accurately
Reconstructed
Signal
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Proper sampling

Slide from Dani Lischinski



Smoothing as low-pass filtering

 The message of the FT is that high frequencies lead to
trouble with sampling.
e Solution: suppress high frequencies before sampling

— multiply the FT of the signal with something that suppresses
high frequencies

— or convolve with a low-pass filter

* A filter whose FT is a box is bad, because the filter kernel has
infinite support

e Common solution: use a Gaussian

— multiplying FT by Gaussianis equivalent to convolving image
with Gaussian.
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Sampling without smoothing.
Top row shows the images, sampled at every second pixel to get the next;
bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16
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Sampling with smoothing.

Top row shows the images. We get the next image by smoothing the image
with a Gaussian with sigma 1 pixel, then sampling at every second pixel to
get the next; bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

LR I LR
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Sampling with smoothing.
Top row shows the images. We get the next image by smoothing the image

with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel
to get the next; bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16




Nyquist sampling theorem

e Nyquist theorem: The sampling frequency must
be at least twice the highest frequency

We > 2W

e If this 1s not the case the signal needs to be

bandlimited before sampling, e.g. with a low-
pass filter




Computation of 2D Fourier Transform

e 2D Fourier Transform can be compute as sequence of
1D Fourier transforms

F(g(x,»))(u, V) 00 g(x, »)e 2™ dx dy
( 0(0e(x ) o 12P () dx) o 12P(W) dy

e Fast Fourier Transform (FFT) can compute Discrete

Fourier Transform very fast (use symmetries) |E = Uf

NNV A
VUVATV VY VY




What went wrong?

CBSNEWS LIVE COVERAGE
PRESIDENTIAL NEWS CONFERENCE

. color sampled at half-resolution!




Signal reconstruction




Image reconstruction: pixelization

e Who is this?

Harmon & Julesz 1973 Dali 1976

ETH




Reconstruction filters

Square pixels Gaussian reconstruction filter
~ spatial " Fourier © ~ spatial - " Fourier ~
Bilinear interpolation Perfect reconstruction filter
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Convolution of Box with Box
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https://commons.wikimedia.org/wiki/File:Convolution_of box_signal_with_itself2.gif



https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

50 50

Designing the
‘perfect’
low-pass filter

100 100

150 150

200

: - : 250
50 100 150 200 250

50
100
150
200

250

50 50

100 100

150 150

200 200

250 250

50 100 150 200 250



Filtering in Fourier domain
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Defocus blurring




Motion blurring @

Each light dot is transformed into a short line along the z-axis:

0(x1 + 1) — 0(x1 — )] 6(x2)

(
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Image restoration problem

fix) — hix) |—9x)—| Ix) |— fl(x)

The ‘inverse’ kernel h(x) should compensate the effect of the
Image degradation i(x), |

(h+ h)(x) = 6(x)
h may be determined more easily in Fourier space:
F[h)(u,v) - F[h](u,v) = 1

To determine F[h] we need to estimate

1. the distortion model h(x) (point spread function) or F[h](u, v) (modu-
lation transfer function)

m 2. the parameters of h(x), e.g. r for defocussing.




Image Restoration: Motion Blur

Kernel for motion blur h(x) = 3 (6(x1 + 1) — 6(xy — 1))d(xo)

(a light dot is transformed into a small line in = direction).

Fourier transformation:

+1 + o
Flh|(u,v) = o] exp(—12muxy) / O(x2) exp(—12mvre)dra dr
2 J

M -

T

=1

sin(2mul)
— —: sinc(2mul
2mul (2mut)
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h(u) = F[h](u) = sinc(2mul) F[h](u) = 1/h(u)

Problems:
° Convolution With the kernel i completely cancels the frequen-
cies 5; for v € Z. Vanishing frequenmes cannot be recovered!

o Nmse amplification for F |[h|(u,v) < 1.



Avoiding noise amplification

20

Regularized M b mg v U f

reconstruction filter:

F [f}] (u,v) = ald !j

|F[h]|2—|—f ad | b [ TR ] b | oo

Singularities are avoided

by the regularization e. A /\ fﬁ (\ /\ N

-20-

The size of € implicitly determines an estimate of the noise level in the image, since we
discard signals which are dampened below the size .
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Coded Exposure Photography:

Assisting Motion Deblurring using Fluttered Shutter
Raskar, Agrawal, Tumblin (Siggraph2006)

Short Exposure Traditional Coded

.
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Captured
“~ Photos

Deblurred
“~ Results
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: Result has Banding Decoded image is as
Ihade I dark Artifacts and some spatial good as image of a

and nois . ;
¥ frequencies are lost static scene




Space-time super-resolution

Shechtman et al. PAMIO5

i Slow-motion interpolation (preserves motion aliasing) l Temporal super-resolution (overcomes motion aliasing)
| g At

n Com




Space-time super-resolution

Shechtman et al. PAMIO5

LR L gl ,
Input sequence #3 %
T TR R

Temporal super-resolution
Bl 7 Ty '
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Space-time super-resolution

Shechtman et al. PAMIO5

(a) Input:

(b) Output:

B vy o

idy Beq. N

time super-resolution works better than space

Fourier transform of Foul
Temporal Blur Temporal Blur Spatial Blur
f - m : } W f / \ e ettt
«—> big t f «—> N A X f
frame T pixel
time distance




Spatial super-resolution

o5

PSF " PIXEL - H

* Low-res images = D*H*G*(desired high-res image)
— D: decimate, H:lens+pixel, G: Geometric warp

e Simplified case for translation: LR=(D*G)*(H*HR)
— Gis shift-invariant and commutes with H
— First compute H*HR, then deconvolve HR with H

e Super-resolution needs to restore attenuated freque
— Manyimages improve S/N ratio (~sqgrt(n)), which helps
— Eventually Gaussian’ s double exponential always dominate
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ext week:

More transtorms...
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