Visual Computing: Fourier Transform

Prof. Marc Pollefeys

Last lecture

- Edges
 - Maximal gradients
 - Zero-crossing Laplacian

Canny edge detection

- Hough transform
- Corners
 - Maximal difference with neighbors

Scale Invariant Feature Transform (SIFT)

ETH

Visual Computing: Fourier Transform

Prof. Marc Pollefeys

Aliasing

- Can't shrink an image by taking every second pixel
- If we do, characteristic errors appear
 - In the next few slides
 - Typically, small phenomena look bigger; fast phenomena can look slower
 - Common phenomenon
 - Wagon wheels rolling the wrong way in movies
 - Checkerboards misrepresented in ray tracing
 - Striped shirts look funny on color television

example image example video

0	Ð	o	0	0	0	0	0	¢	a	¢	¢
0	¢	0	D	0	0	٥	٥				
Ċ	٥	٥	٥	C	Ċ	٥	¢	0	σ	o	o
a	0	¢	٥	Þ	٥	¢	¢				
a	¢	0	D	0	0	O	0	o	0	o	0
0	Ð	o	0	0	0	0	o				
0	0	o	0	0	0	0	Ð	Þ	a	¢	¢
٩	٥	٥	٥	0	0	٥	٥				
o				0				0	0		0
									_		
				r							
								0	0		0
											Ŭ
¢				¢							
								0	Ō		0

Constructing a pyramid by taking every second pixel leads to layers that badly misrepresent the top layer

Open questions

- What causes the tendency of differentiation to emphasize noise?
- In what precise respects are discrete images different from continuous images?
- How do we avoid aliasing?

General thread: a language for fast changes
 The Fourier Transform

The Fourier Transform

- Represent function on a new basis
 - Think of functions as vectors, with many components
 - We now apply a linear transformation to transform the basis
 - dot product with each basis element
- In the expression, u and v select the basis element, so a function of x and y becomes a function of u and v
- basis elements have the form $e^{-i2\pi(ux+vy)}$

 $= \cos 2\pi(ux+vy) - i \sin 2\pi (ux+vy)$

$$F(g(x,y))(u,v) = \iint_{\mathbb{R}^2} g(x,y)e^{-i2\pi(ux+vy)}dxdy$$

Discrete FT: transformed image $F = Uf$ vectorized image
Fourier transform base,
also possible Wavelets, steerable pyramids, etc.

Fourier transform and linear systems

• Basis functions of Fourier transform are eigenfunctions of linear systems

(or why Electrical Engineers love the Fourier transform)

Fourier basis element $e^{-i2\pi(ux+vy)}$

example, real part

 $F^{u,v}(x,y)$

 $F^{u,v}(x,y) = const.$ for (ux+vy) = const.

Vector (u,v)

- Magnitude gives frequency
- Direction gives orientation.

Fourier basis functions

Phase and Magnitude

- Fourier transform of a real function is complex
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform
- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse what does the result look like?

This is the magnitude transform of the cheetah pic

This is the phase transform of the cheetah pic

This is the magnitude transform of the zebra pic

This is the phase transform of the zebra pic

Reconstruction with zebra phase, cheetah magnitude

Reconstruction with cheetah phase, zebra magnitude

Various Fourier Transform Pairs

- Important facts
 - The Fourier transform is linear
 - There is an inverse FT $f = \mathbf{U}^{-1}F$
 - scale function down ⇔ scale transform up
 i.e. high frequency = small details
 - The FT of a Gaussian is a Gaussian.

compare to box function transform

Fourier Transform of important functions

* see in a few slides

Convolution theorem

- The convolution theorem
 - The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F.G = \mathbf{U}(f^{**}g)$$
 (cfr. filtering)

The Fourier transform of the product of two functions is the convolution of the Fourier transforms

$$F * G = \mathbf{U}(f.g)$$
 (cfr. sampling)

Sampling

- Go from continuous world to discrete world, from function to vector
- Samples are typically measured on regular grid

A continuous model for a sampled function

- We want to be able to approximate integrals sensibly $\left[\operatorname{remember:} \iint_{\mathbf{p}^2} g(x, y) e^{-i2\pi(ux+vy)} dx dy \right]$
- Leads to
 - the delta function
 - model on right

$$\begin{aligned} \text{Sample}_{2\text{D}}(f(x,y)) &= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(x,y) \delta(x-i,y-j) \\ &= f(x,y) \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i,y-j) \end{aligned}$$

Delta function

limit to infinity
 of constant area
 function:

A continuous model for a sampled function

- We want to be able to approximate integrals sensibly
- Leads to
 - the delta function
 - model on right

$$\begin{aligned} \text{Sample}_{2\text{D}}(f(x,y)) &= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(x,y) \delta(x-i,y-j) \\ &= f(x,y) \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i,y-j) \end{aligned}$$

The Fourier transform of a sampled signal

$$F(\operatorname{Sample}_{2D}(f(x,y))) = F\left(f(x,y)\sum_{i=-\infty}^{\infty}\sum_{i=-\infty}^{\infty}\delta(x-i,y-j)\right)$$
$$= F(f(x,y)) * F\left(\sum_{i=-\infty}^{\infty}\sum_{i=-\infty}^{\infty}\delta(x-i,y-j)\right)$$
$$= \sum_{i=-\infty}^{\infty}\sum_{i=-\infty}^{\infty}F(u-i,v-j)$$

(notice f(x,y) is a continuous function and we use the continuous form of the Fourier transform)

Proper sampling

Slide from Dani Lischinski

Smoothing as low-pass filtering

- The message of the FT is that high frequencies lead to trouble with sampling.
- Solution: suppress high frequencies before sampling
 - multiply the FT of the signal with something that suppresses high frequencies
 - or convolve with a low-pass filter
- A filter whose FT is a box is bad, because the filter kernel has infinite support
- Common solution: use a Gaussian
 - multiplying FT by Gaussian is equivalent to convolving image with Gaussian.

Sampling without smoothing.

Top row shows the images, sampled at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.

Sampling with smoothing.

Top row shows the images. We get the next image by smoothing the image with a Gaussian with sigma 1 pixel, then sampling at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.

256x256 128x128 64x64 32x32 16x16

Sampling with smoothing.

Top row shows the images. We get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.

256x256 128x128 64x64 32x32 16x16

Nyquist sampling theorem

• Nyquist theorem: The sampling frequency must be at least twice the highest frequency

 $\omega_s \ge 2\omega$

• If this is not the case the signal needs to be bandlimited before sampling, e.g. with a lowpass filter

Computation of 2D Fourier Transform

 2D Fourier Transform can be compute as sequence of 1D Fourier transforms

$$F(g(x,y))(u,v) = \hat{0}\hat{0} g(x,y)e^{-i2\rho(ux+vy)} dx dy$$
$$= \hat{0} \left(\hat{0} g(x,y)e^{-i2\rho(ux)} dx\right)e^{-i2\rho(vy)} dy$$

• Fast Fourier Transform (FFT) can compute Discrete Fourier Transform very fast (use symmetries) $F = \mathbf{U}f$

What went wrong?

88

color sampled at half-resolution!

Signal reconstruction

ETH

Image reconstruction: pixelization

• Who is this?

ETH

Harmon & Julesz 1973

Dali 1976

Reconstruction filters

Bilinear interpolation

Gaussian reconstruction filter

Perfect reconstruction filter

Convolution of Box with Box

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

Designing the 'perfect' low-pass filter

Filtering in Fourier domain

Defocus blurring

ETH

Motion blurring

Each light dot is transformed into a short line along the x_1 -axis:

$$h(x_1, x_2) = \frac{1}{2l} \left[\theta(x_1 + l) - \theta(x_1 - l) \right] \delta(x_2)$$

Image restoration problem

$$f(\mathbf{x}) \longrightarrow \fbox{h}(\mathbf{x}) \longrightarrow g(\mathbf{x}) \longrightarrow \overbrace{\tilde{h}(\mathbf{x})} \longrightarrow f(\mathbf{x})$$

The 'inverse' kernel $\tilde{h}(\mathbf{x})$ should compensate the effect of the image degradation $h(\mathbf{x})$, i.e.,

$$(\tilde{h} * h)(\mathbf{x}) = \delta(\mathbf{x})$$

 \tilde{h} may be determined more easily in Fourier space:

$$\mathcal{F}[\tilde{h}](u,v) \cdot \mathcal{F}[h](u,v) = 1$$

To determine $\mathcal{F}[\tilde{h}]$ we need to estimate

- 1. the distortion model $h(\mathbf{x})$ (point spread function) or $\mathcal{F}[h](u, v)$ (modulation transfer function)
- 2. the parameters of $h(\mathbf{x})$, e.g. r for defocussing.

Image Restoration: Motion Blur

Kernel for motion blur
$$h(\mathbf{x}) = \frac{1}{2l} (\theta(x_1 + l) - \theta(x_1 - l)) \delta(x_2)$$

(a light dot is transformed into a small line in x_1 direction).

Fourier transformation:

$$\mathcal{F}[h](u,v) = \frac{1}{2l} \int_{-l}^{+l} \exp(-i2\pi u x_1) \int_{-\infty}^{+\infty} \delta(x_2) \exp(-i2\pi v x_2) dx_2 dx_1$$
$$= \frac{\sin(2\pi u l)}{2\pi u l} =: \operatorname{sinc}(2\pi u l)$$

ETH

Problems:

- Convolution with the kernel h completely cancels the frequencies $\frac{\nu}{2l}$ for $\nu \in \mathcal{Z}$. Vanishing frequencies cannot be recovered!
- Noise amplification for $\mathcal{F}[h](u, v) \ll 1$.

Avoiding noise amplification

The size of ϵ implicitly determines an estimate of the noise level in the image, since we discard signals which are dampened below the size ϵ .

ETH

Coded Exposure Photography: Assisting Motion Deblurring using Fluttered Shutter Raskar, Agrawal, Tumblin (Siggraph2006)

Decoded image is as good as image of a static scene

Result has Banding Artifacts and some spatial frequencies are lost

Image is dark and noisy

Space-time super-resolution

Shechtman et al. PAMI05

Space-time super-resolution

Shechtman et al. PAMI05

ETH

Space-time super-resolution

Shechtman et al. PAMI05

time super-resolution works better than space

Spatial super-resolution

lens+pixel=low-pass filter (desired to avoid aliasing)

- Low-res images = D*H*G*(desired high-res image)
 - D: decimate, H:lens+pixel, G: Geometric warp
- Simplified case for translation: LR=(D*G)*(H*HR)
 - G is shift-invariant and commutes with H
 - First compute H*HR, then deconvolve HR with H
- Super-resolution needs to restore attenuated frequencie
 - Many images improve S/N ratio (~sqrt(n)), which helps
 - Eventually Gaussian's double exponential always dominates

Next week: More transforms...

Eigenfaces

Wavelets

			ľ	ľ	
		ď	8	Ň	ľ
		8	8	8	
	-	 •	•		•
		 •	•	•	•
		 •		•	•