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Last lecture

Fourier Transform

 

F g x,y( )( ) u,v( )= g x, y( )e− i2 ux+vy( )
dxdy

R 2



 

e
−i2 ux+vy( )

= cos 2(ux+vy) − i sin2 (ux+vy)
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Various Fourier Transform Pairs

• Important facts
– The Fourier transform is linear

– There is an inverse FT

– scale function down  scale transform up

i.e. high frequency = small details

– The FT of a Gaussian is a Gaussian.

compare to box function transform

Ff 1−= U



Fourier Transform

of important functions

spatial domain frequency domain
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Convolution theorem

• The convolution theorem
– The Fourier transform of the convolution of two functions is the 

product of their Fourier transforms

– The Fourier transform of the product of two functions is the 
convolution of the Fourier transforms

( )gfGF **. U=

( )gfGF .** U=

(cfr. filtering)

(cfr. sampling)



6

Sampling

• Go from continuous world to discrete world, 
from function to vector 

• Samples are typically measured on regular 
grid
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Sampling in 2D does the same thing, only in 2D.  We’ll assume that 

these sample points are on a regular grid, and can place one at each 

integer point for convenience.
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A continuous model for a sampled 
function

• We want to be able to 
approximate integrals 
sensibly

• Leads to

– the delta function

– model on right

 

Sample2D f (x,y)( )= f (x, y) (x − i, y − j)
i=−




i=−





= f (x,y)  (x − i, y − j)
i=−




i=−





j

j
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Delta function

• limit to infinity

of constant area

function:

h2

1
−

h2

1

h
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A continuous model for a sampled 
function

• We want to be able to 
approximate integrals 
sensibly

• Leads to

– the delta function

– model on right

 

Sample2D f (x,y)( )= f (x, y) (x − i, y − j)
i=−




i=−





= f (x,y)  (x − i, y − j)
i=−




i=−





j

j
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The Fourier transform of a sampled 
signal

 

F Sample 2D f (x,y)( )( )= F f (x, y) (x − i,y − j)
i=−




i=−




 

 
 

 

 
 

= F f (x,y)( )**F (x − i, y − j)
i=−




i=−




 

 
 

 

 
 

= F u − i,v − j( )
j=−




i=−





j

j
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multiply convolve
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multiply convolve

aliasing!



Proper sampling

Slide from Dani Lischinski
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Smoothing as low-pass filtering

• The message of the FT is that high frequencies lead to 
trouble with sampling.

• Solution: suppress high frequencies before sampling

– multiply the FT of the signal with something that suppresses 
high frequencies

– or convolve with a low-pass filter

• A filter whose FT is a box is bad, because the filter kernel has 
infinite support

• Common solution: use a Gaussian

– multiplying FT by Gaussian is equivalent to convolving image 
with Gaussian.
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Sampling without smoothing.  
Top row shows the images, sampled at every second pixel to get the next; 

bottom row shows the magnitude spectrum of these images.
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Sampling with smoothing.  
Top row shows the images.  We get the next image by smoothing the image 

with a Gaussian with sigma 1 pixel, then sampling at every second pixel to 

get the next; bottom row shows the magnitude spectrum of these images.
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Sampling with smoothing.  
Top row shows the images.  We get the next image by smoothing the image 

with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel 

to get the next; bottom row shows the magnitude spectrum of these images.



Nyquist sampling theorem



What went wrong?

color sampled at half-resolution!



Signal reconstruction



Harmon & Julesz 1973 Dali 1976

Image reconstruction: pixelization

• Who is this?



Reconstruction filters
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Square pixels

spatial Fourier

spatial Fourier spatial Fourier

spatial Fourier

Bilinear interpolation

Gaussian reconstruction filter

Perfect reconstruction filter



Convolution of Box with Box

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif
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Designing the 

‘perfect’ 
low-pass filter



Filtering in Fourier domain

file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04b_Fourier/fourier.flv


Defocus blurring



Motion blurring



Image restoration problem



Image Restoration: Motion Blur





Avoiding noise amplification



Fluttered shutter



Space-time super-resolution
Shechtman et al. PAMI05



Space-time super-resolution
Shechtman et al. PAMI05

…



Space-time super-resolution
Shechtman et al. PAMI05

time super-resolution works better than space



Spatial super-resolution

• lens+pixel=low-pass filter (desired to avoid aliasing)

• Low-res images = D*H*G*(desired high-res image)

– D: decimate, H:lens+pixel, G: Geometric warp

• Simplified case for translation: LR=(D*G)*(H*HR) 
– G is shift-invariant and commutes with H

– First compute H*HR, then deconvolve HR with H

• Super-resolution needs to restore attenuated frequencies 
– Many images improve S/N ratio (~sqrt(n)), which helps

– Eventually Gaussian’s double exponential always dominates



Next week:
More Image Transformations

Eigenfaces Wavelets





• Maybe a bit too short, explain better super-
reslution with added noise, etc.  
Lena+gaussian noise slide is funny…

• Defocus bluring slide also a bit funny…

• Make slides to explain reconstruction kernels 
as convolution of boxes…  
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