Visual Computing:

Fourier Transform

Prof. Marc Pollefeys



Last lecture

Fourier Transform
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Various Fourier Transform Pairs

* Important facts

— The Fourier transform is linear
— Thereis aninverse FT f =U'F

— scale function down <> scale transform up
i.e. high frequency = small details

— The FT of a Gaussianis a Gaussian.

compare to box function transform
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Fourier Transform
of Important functions
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Convolution theorem

e The convolution theorem

— The Fourier transform of the convolution of two functions is the
product of their Fourier transforms

F.G=U(f**g) (cfr. filtering)

— The Fourier transform of the product of two functions is the
convolution of the Fourier transforms

F**G=U(f.g) (cfr. sampling)




Sampling

* Go from continuous world to discrete world,
from function to vector

 Samples are typically measured on regular
grid
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Sampling in 2D does the same thing, only in 2D. We' 1l assume that

these sample points are on a regular grid, and can place one at each
integer point for convenience. A




A continuous model for a sampled
function

e We want to be able to

approximate integrals
sensibly

e Leadsto
— the delta function
— model on right

Sample, (/())= 3 D f(6 00—, 9- )
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Delta function

* |imit to infinity
of constant area
function:




A continuous model for a sampled
function

e We want to be able to

approximate integrals
sensibly

e Leadsto
— the delta function
— model on right

Sample, (/())= 3 D f(6 00—, 9- )
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The Fourier transform of a sampled
signal

F(Sample,, (f(x,)))= F( I, y)Z Z5(x by ])j
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Proper sampling

Slide from Dani Lischinski



Smoothing as low-pass filtering

 The message of the FT is that high frequencies lead to
trouble with sampling.
e Solution: suppress high frequencies before sampling

— multiply the FT of the signal with something that suppresses
high frequencies

— or convolve with a low-pass filter

* A filter whose FT is a box is bad, because the filter kernel has
infinite support

e Common solution: use a Gaussian

— multiplying FT by Gaussianis equivalent to convolving image
with Gaussian.
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Sampling without smoothing.
Top row shows the images, sampled at every second pixel to get the next;
bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16
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Sampling with smoothing.

Top row shows the images. We get the next image by smoothing the image
with a Gaussian with sigma 1 pixel, then sampling at every second pixel to
get the next; bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

LR I LR
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Sampling with smoothing.
Top row shows the images. We get the next image by smoothing the image

with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel
to get the next; bottom row shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16




Nyquist sampling theorem

e Nyquist theorem: The sampling frequency must
be at least twice the highest frequency

We > 2W

e If this 1s not the case the signal needs to be

bandlimited before sampling, e.g. with a low-
pass filter




What went wrong?

CBSNEWS LIVE COVERAGE
PRESIDENTIAL NEWS CONFERENCE

- color sampled at half-resolution!




Signal reconstruction




Image reconstruction: pixelization

e Who is this?

Harmon & Julesz 1973 Dali 1976
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Reconstruction filters

Square pixels Gaussian reconstruction filter
~ spatial " Fourier © ~ spatial - " Fourier ~
Bilinear interpolation Perfect reconstruction filter
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Convolution of Box with Box
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https://commons.wikimedia.org/wiki/File:Convolution_of box_signal_with_itself2.qgif



https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

50 50

Designing the
‘perfect’
low-pass filter

100 100

150 150

200

: - : 250
50 100 150 200 250

50
100
150
200

250

50 50

100 100

150 150

200 200

250 250

50 100 150 200 250



Filtering in Fourier domain



file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp04b_Fourier/fourier.flv

Defocus blurring




Motion blurring @

Each light dot is transformed into a short line along the z-axis:

0(x1 + 1) — 0(x1 — )] 6(x2)
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Image restoration problem

fix) — hix) |—9x)—| Ix) |— fl(x)

The ‘inverse’ kernel h(x) should compensate the effect of the
Image degradation i(x), |

(h+ h)(x) = 6(x)
h may be determined more easily in Fourier space:
F[h)(u,v) - F[h](u,v) = 1

To determine F[h] we need to estimate

1. the distortion model h(x) (point spread function) or F[h](u, v) (modu-
lation transfer function)

m 2. the parameters of h(x), e.g. r for defocussing.




Image Restoration: Motion Blur

Kernel for motion blur h(x) = 3 (6(x1 + 1) — 6(xy — 1))d(xo)

(a light dot is transformed into a small line in = direction).

Fourier transformation:

+1 + o
Flh|(u,v) = o] exp(—12muxy) / O(x2) exp(—12mvre)dra dr
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h(u) = F[h](u) = sinc(2mul) F[h](u) = 1/h(u)

Problems:
° Convolution With the kernel i completely cancels the frequen-
cies 5; for v € Z. Vanishing frequenmes cannot be recovered!

o Nmse amplification for F |[h|(u,v) < 1.



Avoiding noise amplification
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Regularized M b mg v U f

reconstruction filter:

F [f}] (u,v) = ald !j

|F[h]|2—|—f ad | b [ TR ] b | oo

Singularities are avoided

by the regularization e. A /\ fﬁ (\ /\ N
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The size of € implicitly determines an estimate of the noise level in the image, since we
discard signals which are dampened below the size .
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Coded Exposure Photography:

Assisting Motion Deblurring using Fluttered Shutter
Raskar, Agrawal, Tumblin (Siggraph2006)

Short Exposure Traditional Coded

.
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Space-time super-resolution

Shechtman et al. PAMIO5

i Slow-motion interpolation (preserves motion aliasing) l Temporal super-resolution (overcomes motion aliasing)
| g At

n Com




Space-time super-resolution

Shechtman et al. PAMIO5
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Space-time super-resolution

Shechtman et al. PAMIO5

(@) Input:

(b) Output:

(d) Req. Neam:

time super-resolution works better than space

Fourler transtomn of
Temporal Blur Te mp:l ral Blur ial Blur
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SD alial Blur

time dlstmce

(a) (c) (b) {d)




Spatial super-resolution

PSF " PIXEL = H

* Low-res images = D*H*G*(desired high-res image)
— D: decimate, H:lens+pixel, G: Geometric warp

e Simplified case for translation: LR=(D*G)*(H*HR)
— Gis shift-invariant and commutes with H
— First compute H*HR, then deconvolve HR with H

e Super-resolution needs to restore attenuated freque
— Manyimages improve S/N ratio (~sqgrt(n)), which helps
— Eventually Gaussian’ s double exponential always dominate
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Xt week:
More Image Transformations

Eigenfaces Wavelets
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 Maybe a bit too short, explain better super-
reslution with added noise, etc.
Lena+gaussian noise slide is funny...

e Defocus bluringslide also a bit funny...

 Make slides to explain reconstruction kernels
as convolution of boxes...
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