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Last week

The Convolution Theorem Digital Processing Pipeline

F.G= U(f **g) (cfr. filtering)
F**G = U(f .g) (cfr. sampling)
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Space-time super-resolution

Shechtman et al. PAMIO5

i Slow-motion interpolation (preserves motion aliasing) l Temporal super-resolution (overcomes motion aliasing)
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Space-time super-resolution

Shechtman et al. PAMIO5
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Space-time super-resolution

Shechtman et al. PAMIO5

(a) Input:

(b) Output:
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time super-resolution works better than space
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Spatial super-resolution

o5

PSF " PIXEL - H

* Low-res images = D*H*G*(desired high-res image)
— D: decimate, H:lens+pixel, G: Geometric warp

e Simplified case for translation: LR=(D*G)*(H*HR)
— Gis shift-invariant and commutes with H
— First compute H*HR, then deconvolve HR with H

e Super-resolution needs to restore attenuated freque
— Manyimages improve S/N ratio (~sqgrt(n)), which helps
— Eventually Gaussian’ s double exponential always dominate
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A digital image can be written as a matrix

Y

- /(0,0) SOy - J(N-L0)

F(0,L—-1) f(LL-1) - f(N-1LL-1)]

s The pixels f{x,v) are sorted into the matrix in ,natural” order, with x
corresponding to the column and v to the row index. This results in flx,v) = f,,,
where f,. denotes an individual element in common matrix notation.

s For a color image, I might be one of the components.
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A digital image can be written as a vector

£(0,0) foo )
£(1.0) for

f(N-1.0) Jov

(0.1 Jic
7o : | Column vector of length LxXV.
J(N-11) Jy-1a
: ; This makes the math easier.
f(OL _1} .ff_—l_ﬂ

\. f(*ﬁ"r —LL- 1) J \ fL—l:_-‘J—l J
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Linear Image Processing

= Any linear image processing algorithms can be written as

g =Hf

Note: matrix /7 need not be square.

a Definition of a linear operator O[]

Ola,-f,+a, f,|=a-O| f, |+a,-O| f,
for all scalars «,,«,

= Almost all image processing systems contain at least some
linear operators.
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Linear image processing problems

For the linear image processing system

how does one choose H . ..

= ...S0 g separates the salient features from the rest of the
Image signal.
= ...sog looks better?

= . ..In Drderfmrg to be sparse?




Unitary transforms

s Sort samples f(x,y) of an MX/N image (or a rectangular
block in the image) into colunm vector of length MN
s Compute transform coefficients

¢ = Af
where A is a matrix of size MNXMN

s [he transform 4 is unitary, Iff

-1 T H
At =4"=4"
W

Hermitian conjugate

s If 4 isreal-valued, i.e., 4=4%* transform is ,orthonormal”
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Energy conservation with unitary transforms

= For any unitary transform ¢ = 4}7 we obtain

I = e - 7amai A

= [nterpretation: every unitary transform is simply a rotation of
the coordinate system (and, possibly, sign flips)

s Vector lengths (,energies”) are conserved.




Image collection

ﬁ one image

F — [ﬂjfz ﬁi] Image collection

H
F- F image collection

R J(f — E [ ]Fl . ]FZH] — " auto-correlation function




Energy distribution with unitary transforms

= Energy is conserved, but often will be unevenly distributed
among coefficients.

s Autocorrelation matrix
R.=E[cc™ |=E|Af - f74" |= 4R, 4"

s Mean squared values (,average energies”) of the
coefficients c; are on the diagonal of R ..

[ [8.], =[ar,a"],




Eigenmatrix of autocorrelation matrix

Definition: eigenmatrix @ of autocorrelation matrix R

e @ is unitary
e The columns of @ form a set of eigenvectors of Rﬁ, e,

Rﬁ(I) — MDA+ Ais adiagonal matrix of eigenvalues A,
B [ Ay 0 )

Lo Aapit/

* R;is symmetric nonnegative definite, hence 1, =0 for all i
* R, iIs normal matrix, i.e.,RgRﬁ — R..RZ hence unitary eigenmatrix

_ For
exisis
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Karhunen-Loeve Transform
(aka PCA)

= Unitary transform with matrix
H
A=O
where the columns of ®@ are ordered according to

decreasing eigenvalues.
= [ransform coefficients are pairwise uncorrelated

R, =AR, A" =D"R,O=0O"OA=A

s Energy concentration property:

e No other unitary transform packs as much energy into the first .J
coefficients, where J is arbitrary

e Mean squared approximation error by choosing only first.J
coefficients is minimized.
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Optimal energy concentration by KL transform

e To show optimum energy concentration property, consider the
truncated coefficient vector  _

b=1,
where I, contain ones on the first J diagonal positions, else zeros.

e Energy in first J coefficients for arbitrary transform 4
J-1

E=Tr(Ry)= T1(I;R.1;)= Tr(I;ARpA"1; )= a; Rya,
=0

where a/ is the k - th row of 4.
e Lagrangian cost function to enforce unit-length basis vectors

J-1 J-1 J-1
L=E+) % _ﬂi{ﬁr‘:): Zﬁiﬂﬂﬂ: +2 A(l- “f“’:)
k=0 =0 k=0

¢ Differentiating L with respect to a, yields necessary condition

Ria, = Aa; forallj<J
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lllustration of energy concentration

(casfﬁ' —sinﬁ““ c,!

. sing  cosd

Strongly correlated After KLT:

samples, uncorrelated samples,
equal energies most of the energy in
first coefficient
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Basis images and eigenimages

= For any unitary transform, the inverse transform
f=4"¢

can be interpreted in terms of the superposition of ,basis
Images” (columns of 47) of size MN.
= [fthe transform is a KL transform, the basis images, which

are the eigenvectors of the autocorrelation matrix R, , are
called ,eigenimages.”

= [f energy concentration works well, only a limited number of
eigenimages is needed to approximate a set of images with
small error. These eigenimages form an optimal linear
subspace of dimensionality .J.
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Eigenimages for recognition

= [0 recognize complex patterns (e.g., faces), large portions of
an image (say of size MN) might have to be considered

= High dimensionality of “image space” means high
computational burden for many recognition techniques

Example: nearest-neigbor search requires pairwise comparison with
every image in a data base

s Transform ¢ = W]? can reduce dimensionality from MN to J
by representing the image by J coefficients

s |dea: tailor a KLT to the specific set of images of the
recognition task to preserve the salient features
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Simple recognition

e Simple Euclidean distance (SSD) between images
e Best match wins

argmin D, :Hli—lH

 Computationally expensive, i.e. requires presented image to be
correlated with every image in the database !




Eigenspace matching

e Consider PCA (aka KLT)

|, =~ Ep,
ML

Closest rank-k approximation property of SVD

e i—i-T~E(p-p) 1T
=1 =P =p| p=E"
amme:l;W»

i
Much cheaper to compute!




Application to faces

i

Concatenate face pixels into
“observation vector”, x.

XN

(slide courtesy of Simon Prince)



Distance-Based Methods

NEAREST-NEIGHBOUR
DECISION

n Observed data
vector transformed

to feature space
[ >

Deterministic
transformation

OBSERVED DIM 2
FEATURE DIM 2

\ 4
v

OBSERVED DIM 1 FEATURE DIM 1

UNDERLIES: Eigenfaces, Fisherfaces, Laplacianfaces, ICA, Kernel PCA etc,
LOGIC: by projecting to a suitable space signal:noise ratio is improved

m (slide courtesy of Simon Prince)
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Eigenfaces

average face

plus a linear
combination of eigenfaces

» Can be used for face recognition by
nearest neighbor search in 8-d “face space’
= Can be used to generate faces by
adjusting 8 coefficients




Eigenimages for recognition (cont.)

q REJECTION
SYSTEM
.) W1 =] The most similar p.

1 .
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[Ruiz-del-Solar and Navarrete, 2005]




3D geometry + appearance

3D Database

AA A

Morphable
Face Model

Face
Analyze

r}
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Morphable Models

A Morphable Model
for the
sSynthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics
Tubingen, Germany




Eigenspace: summary

* PCA (or KL transform)
gg I — |— I best rank-k

o= approximation
1
\_ _J Na c/

A\ & I =
* SSD matching vs. Eigenspace matching

[e.]=S,V/
Ii_IHZ |l.—| Ci‘CH with  ¢=U’I |:-
C

»

Eigenspace matching will typically work better because only main
characteristics are preserved and irrelevant details are discarded



Limitations of Eigenfaces

Differences due to varying illumination can be much
larger than differences between faces!

—*  Eigenface

_ Eigenface w/o first
three components

0 50 100 150
Number of Principal Components

[Belhumeur, Hespanha, Kriegman, 1997]




Fisherfaces / LDA (Belhumeur et al. 1997)

Training Data Between Individual Within-Individual
Variance Variance
®
®
o o0®® \ °
: PY
o‘o‘
®
o o°
KEY IDEAS:

* Find directions where ratio of between:within individual variance are maximized
* Linearly project to basis where dimension with good signal:noise ratio are maximized

m (slide courtesy of Simon Prince)




Fisher linear discriminant analysis

s Eigenimage method maximizes “scatter” within the linear subspace over
the entire image set — regardless of classification task

W, = argmax (de‘r (WR w ))
: ,

m  Fisher linear discrimant analysis (1936). maximize between-class
scatter, while minimizing within-class scatter

—_— § — —_— H

RN ()i -n)

 det (7R, i )fi‘*é / .x’f
H;} — arg max § Samples Mean in class i
4 det(m w ) n class 1
. — """‘-a.___ . e
~ R, =) > (T — UL )(F _ﬂf]
i=1 T, eClass(i)
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Fisher linear discriminant analysis (cont.)

m Solution: Generalized eigenvectors T corresponding to the
K largest eigenvalues {4 |i=12...K}, i.e.

)

Row =AR,w , i=12,..,K

I 1

= Problem: within-class scatter matrix R, , at most of rank L-c,
hence usually singular.

= Apply KLT first to reduce dimension of feature space to L-c
(or less), proceed with Fisher LDA in low-dimensional
space

ETH




Eigenfaces vs. Fisherfaces

2d example:
Samples for 2 classes
are projected onto 1d
subspace using the
KLT (aka PCA) or
Fisher LDA (FLD).
PCA preserves
maximum energy, but
the 2 classes are no

longer distinguishable.

FLD separates the
classes by choosing
a better 1d subspace.
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Eigenfaces vs. Fisherfaces

Differences due to varying illumination can be much
larger than differences between faces!

—*  Eigenface

_ Eigenface w/o first
three components

T T s s Fisherface (7.3%)

0 50 100 150
Number of Principal Components

[Belhumeur, Hespanha, Kriegman, 1997]




Fisher images and varying illumination

All Images of same Lambertian surface with different
Illumination (without shadows) lie in a 3d linear subspace

Single point source at Infinity

Light source

\ Intensi
surface ,n%ék Y \Kx\
normal 17 __,~'""- , 3
£ (x.y)=a(xy)(Fn(x.0)] L
— " light source T
direction f

Surface
albedo

Superposition of arbitrary number of point sources at infinity
still in same 3d linear subspace, due to linear superposition
of each contribution to image

Fisherimages can eliminate within-class scatter
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Face recognition with Eigenfaces and Fisherfaces

identification rate

ik

o e e e e

e

FERET data base,
294 classes,
3 images per class
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Fisher images trained to recognize glasses

\ (GLASSES RECOGNITION |

Method | Beduced Error
Space | Rate (%)

Eigenface 10 52.6
Fisherface 1 53

m [Belhumeur, Hespanha, Kriegman, 1997]
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Appearance manifold approach

- for every object

sample the set of viewing conditions
- use these images as feature vectors
- apply a PCA over all the images
- keep the dominant PCs
- sequence of views for 1 object represent a
manifold in space of projections
- what is the nearest manifold for a given view?

[Nayar et al. "96]



Object-pose manifold

 Appearance changes projected on PCs (1D pose changes)

e Sufficient characterization for recognition and pose
estimation

[Nayar et al. "96]
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Real-time recognition system

[Nayar et al. "96]



JPEG image compression

Lenna, 256x256 RGB
Baseline JPEG: 4572 bytes



Campbell-Robson contrast sensitivity curve

We don't resolve high frequencies too well...
E'H ... let's use this to compress images... JPEG!




Lossy Image Compression (JPEG)
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Block-based Discrete Cosine Transform (DCT)
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JPEG Encoding and Decoding

Encoding o
Quantization DC
8x8 Matrix DC DPCM Huffman
S} o
Zig Zag AC |
AC | Scan Huffman
; Code books
Decoding
DC DC
Huffman IDPCM —
— Q* IDCT  [8X8
block
AC
Huffman AC

WWW.jpeg.org



Using DCT In JPEG

A variant of discrete Fourier transform
« Real numbers
« Fast implementation

Block size

« small block
— faster
— correlation exists between neighboring pixels

+ large block
— better compression in smooth regions




Using DCT in JPEG

The first coefficient B(0,0) is the DC component,
the average intensity

The top-left coeffs represent low frequencies,
the bottom right — high frequencies
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Image compression using DCT

DCT enables image compression by
concentrating most image information in the
low frequencies

Loose unimportant image info (high
frequencies) by cutting B(z,v) at bottom right

The decoder computes the inverse DCT — IDCT

*Quantization Table

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7

BoW BLmR LE LR B RERE
o W R AR RRIRE L
[ N W gl L
R nan

9 11 13 15 17 19 21 123
11 13 15 17 19 21 23 25
13 15 17 1% 21 23 25 27
15 17 19 21 23 25 27 2%
17 1% 21 23 25 27 2% 31




Entropy Coding (Huffman code)

Binary 1
Symbol Prob. Code Fraction
Z 0.5 1 0.1 T 1
1 1
Y 0.25 01 0.01 0
1
X 0.125 001 0.001 T<—1 0
W 0.125 000 0.000 <9

 The code words, if regarded as a binary fractions, are pointers to the
particularinterval being coded.

* In Huffman code, the code words point to the base of each interval.
* The average code word length is H = —Xp(s)log, p(s) -> optimal
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JPEG compression comparison




Thursday:

Pyramids and wavelets
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