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Last week

The Convolution Theorem Digital Processing Pipeline
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Image restoration



Space-time super-resolution
Shechtman et al. PAMI05



Space-time super-resolution
Shechtman et al. PAMI05

…



Space-time super-resolution
Shechtman et al. PAMI05

time super-resolution works better than space



Spatial super-resolution

• lens+pixel=low-pass filter (desired to avoid aliasing)

• Low-res images = D*H*G*(desired high-res image)

– D: decimate, H:lens+pixel, G: Geometric warp

• Simplified case for translation: LR=(D*G)*(H*HR) 
– G is shift-invariant and commutes with H

– First compute H*HR, then deconvolve HR with H

• Super-resolution needs to restore attenuated frequencies 
– Many images improve S/N ratio (~sqrt(n)), which helps

– Eventually Gaussian’s double exponential always dominates
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A digital image can be written as a matrix

(many slides from Bern Girod)



A digital image can be written as a vector



Linear Image Processing



Linear image processing problems



Unitary transforms



Energy conservation with unitary transforms



Image collection

F = [ f1 f2 fn ]

fi one image

Image collection

Rff = E[ fi. fi
H ]=

F.FH

n

image collection 

auto-correlation function



Energy distribution with unitary transforms



Eigenmatrix of autocorrelation matrix



Karhunen-Loeve Transform
(aka PCA)



Optimal energy concentration by KL transform



Illustration of energy concentration



Basis images and eigenimages



Eigenimages for recognition



23

Simple recognition

• Simple Euclidean distance (SSD) between images

• Best match wins

• Computationally expensive, i.e. requires presented image to be 
correlated with every image in the database !
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Eigenspace matching

• Consider PCA (aka KLT)

• Then,
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Much cheaper to compute!

U.S.VT k.Vk
TUk
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Closest rank-k approximation property of SVD
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Application to faces

x1

x2

x3

xN

…
…
..

Concatenate face pixels into 

“observation vector”, x.

(slide courtesy of Simon Prince)



Distance-Based Methods 
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Eigenfaces

plus a linear 

combination of eigenfaces
▪ Can be used for face recognition by 

nearest neighbor search in 8-d “face space”
▪ Can be used to generate faces by 

adjusting 8 coefficients 



Eigenimages for recognition (cont.)



3D geometry + appearance

[Blanz and Vetter ’99]



Morphable Models



• PCA (or KL transform)

• SSD matching vs. Eigenspace matching

Eigenspace: summary

…
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Eigenspace matching will typically work better because only main 

characteristics are preserved and irrelevant details are discarded
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Limitations of Eigenfaces



Fisherfaces / LDA (Belhumeur et al. 1997)

Training Data Between Individual 
Variance

Within-Individual 
Variance

KEY IDEAS:  
• Find directions where ratio of between:within individual variance are maximized
• Linearly project to basis where dimension with good signal:noise ratio are maximized

(slide courtesy of Simon Prince)



Fisher linear discriminant analysis



Fisher linear discriminant analysis (cont.)



Eigenfaces vs. Fisherfaces



Eigenfaces vs. Fisherfaces



Fisher images and varying illumination



Face recognition with Eigenfaces and Fisherfaces



Fisher images trained to recognize glasses
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Appearance manifold approach

- for every object 

sample the set of viewing conditions
- use these images as feature vectors
- apply a PCA over all the images 
- keep the dominant PCs
- sequence of views for 1 object represent a

manifold in space of projections
- what is the nearest manifold for a given view? 

[Nayar et al. ’96]
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Object-pose manifold

• Appearance changes projected on PCs (1D pose changes)

• Sufficient characterization for recognition and pose 
estimation

[Nayar et al. ’96]
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Real-time recognition system

[Nayar et al. ’96]



JPEG image compression



Campbell-Robson contrast sensitivity curve



Lossy Image Compression (JPEG)



JPEG Encoding and Decoding
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Using DCT in JPEG



Using DCT in JPEG



Image compression using DCT



Entropy Coding (Huffman code)

• The code words, if regarded as a binary fractions, are pointers to the 
particular interval being coded.

• In Huffman code, the code words point to the base of each interval. 

• The average code word length is H = –p(s)log2 p(s)  -> optimal

Symbol Prob. Code

Binary

Fraction

Z 0.5 1 0.1

Y 0.25 01 0.01

X 0.125 001 0.001

W 0.125 000 0.000

1

1

1

0
0

0



JPEG compression comparison



Thursday:
Pyramids and wavelets
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