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Optical Flow

* Brightness Constancy
 The Aperture problem

* Regularization

* Lucas-Kanade

* Coarse-to-fine

* Parametric motion models
* Direct depth

e SSD tracking

* Robust flow

e Bayesian flow




Optical Flow: Where do pixels move to?




Motion is a basic cue

Motion can be the only cue for segmentation

7
Some slides from Luc Van Gool




Motion is a basic cue

Even impoverished motion data can elicit a strong percept




Applications

e tracking

e structure from motion
* motion segmentation
 stabilization

* compression

* Mosaicing




Optical Flow

* Brightness Constancy




Definition of Optical Flow

OPTICAL FLOW = apparent motion of
brightness patterns

Ideally, the optical flow is the projection of the three-
dimensional velocity vectors on the image
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Caution required

Two examples

1. Uniform, rotating sphere

U
O.F.= 0

2. No motion, but changing lighting

U
OF =0
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Caution required




Mathematical formulation

| (X,y,t) = brightness at (X,y) at time

Brightness constancy assumption:

I(x+%é’t,y+OIy

—ot,t+)=1(x,vy,t
dt dt ) =1y

Optical flow constraint equation :

dil ol dx aldy al _,
dt ox dt oy dt o
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Optical Flow

* The Aperture problem




The aperture problem

dx dy

Uu=—, V=—

dt dt
ol ol Ol
IX:_9 Iy:—, It:_
oy oy ot

1 equation in 2 unknowns
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The aperture problem

ul; +vl, + [,=0
one equation,
two unknowns

canstramt
line —=~

Figure 12-4. lLocal information on the brightness gradient and the rate of
change of brightness with time provides only one constraint on the components
‘of the optical flow vector. The flow velocity has to lie along a straight line per-
pendicular to the direction of the brightness gradient. We can only determine the
component in the direction of the brightness gradient. Nothing is known about

m the low component in the direction at right angles.




Aperture problem and Normal Flow

The gradient constraint:

\

lu+l v+l =0

VielU =0

Defines a line in the (u,v) space

&

Normal Flowz\
L VI
2\

N
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The aperture problem




Remarks




Apparently an aperture problem




What is Optic Flow, anyway?

* Estimate of observed projected motion field
* Not always well defined!

* Compare:

— Motion Field (or Scene Flow)
projection of 3-D motion field

— Normal Flow
observed tangent motion

— Optic Flow
apparent motion of the brightness pattern
(hopefully equal to motion field)

* Consider Barber pole illusion

ETH

@2 P



23

Planar motion examples

* Ideal motion of a plane

'k
. C. .
/ — — [ _—
&
slati , : rotation
What 1s the lrm}blalmﬂ translation TD[RUDI} | Yy
. . m X in 7 'dl'()l]ﬂd Y4 aroun
motion here? 1n

Scene Flow: —
Normal Flow: undet
Optic Flow: 72, probably 0



Optical Flow

* Regularization




Horn & Schunck algorithm

Additional smoothness constraint :
e, = J[ (U +uf) + (v} +vy))dxdy,

besides OF constraint equation term

e, :”(Ixu+ v+ 1,)*dxdy,

‘ minimize es+iec ‘
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Horn & Schunck

0 0

The Euler-Lagrangeequations: EF -~ F __~ZF =0
ox > oy
F - 9 F - 9 F, =0
In our case ox " oy '

F=(ug+uy)+(v; +vy)+A(Lu+1 v+1,)%
so the Euler-Lagrange equations are

Au=A(Lu+Ilyv+I)l,

=A(Lu+lv+I1)I,

o° 0
A=——+ ) IS the Laplacian operator
ox° oy 26



Horn & Schunk

Remarks :

ETH

1. Coupled PDEs solved using iterative
methods and finite differences

ou
_3[ — AU — ﬂ,(lXU+IyV+It)Ix’
oV

2. More than two frames allow a better

estimation of |t

3. Information spreads from corner-type
patterns
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Horn & Schunk, remarks

1. Errors at boundaries

2. Example of regularisation
(selection principle for the solution of
illposed problems)
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Results of an enhanced system




Structure from motion with OF
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Optical Flow

 Lucas-Kanade




Lucas-Kanade: Integrate over a Patch

Assume a single velocity for all pixels within an image patch

Ev)= Y (1t £ (e 1,
x,yeld dE(u,v) 22| (| U+l v+l ) 0

du

Solve with: dEé‘\J/ V)51 (Lu+ 1y+1,)=0

N2 NY1a,|(u N1
s, 30 S

V
On the LHS: sum of the 2x2 outer product
tensor of the gradient vector

S vivit =-Y v,




Lucas-Kanade: Singularities and the
Aperture Problem

-NI1I
Let M =Y (VI)VI) and b:[_%f-f}
« Algorithm: At each pixel compute 7 by solving MU=b

= M is singular if all gradient vectors point in the same direction
-- £.9., along an edge
-- of course, trivially singular if the summation is over a single pixel
-- i.e., only normal flow is available (aperture problem)

* Corners and textured areas are OK

KLT feature tracker:
see “Good Features to Track”, Shi and Tomasi, CVPR'94, 1994, pp. 593 - 600.
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=5[]

1024 x 768 video, Time: 28.243 msec, Features: [MAX 1000] (Tracked 343 of 344) (Added




Iterative Refinement

Estimate velocity at each pixel using one iteration
of Lucas and Kanade estimation

Warp one 1mage toward the other using the
estimated flow field

(easier said than done)

Refine estimate by repeating the process



Motion and Gradients

Consider 1-d signal; assume linear function of x

f
t=0
I t=1 dl _ dl%
_4al dx "
‘ dt
X
0 = I u + I,
“shift by u to account 7
for I, with 1.” o= - —
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[terative refinement

BUT!!




Optical Flow

e Coarse-to-fine




Limits of the (local) gradient method

1. Fails when intensity structure within window 1s
poor

2. Fails when the displacement 1s large (typical

operating range 1s motion of 1 pixel per
iteration!)

—  Linearization of brightness is suitable only for small
displacements

Also, brightness 1s not strictly constant in 1images

— actually less problematic than it appears, since we
can pre-filter images to make them look similar
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Pyramid /

“Coarse-to-fine”




Coarse-to-Fine Estimation

[,-u+l -v+1, ﬁO‘ ==>small # and v ...

h A,
[
o i\

VN
! vt
Igline 4= *~
Wil A) kY
Fi rll [! "

=25 pgcéfs

u=>3 pixels

u=10 pixels;

Pyramid of image J Pyramid of image I



OF application: Image stabilization

DeShaker



Video_image_stabilization.ogv
http://www.guthspot.se/video/deshaker.htm

OF application: MatchMoving

+

2d Products & Services  Capabiliies  Applications  Support  Purchase

The virtual interchangable with the real.

5

Welcome to 2d3, the virtual interchangeable with the real
= New boujou Paint R



file://localhost/Users/pomarc/Dropbox/pomarc/Documents/Courses/visualcomputing/VisComp06b_VideoCompression/Cliff_DIVX_half.avi




OF application: Slow motion

* Slow motion (generate intermediate frames)
 Technology is also key to 100Hz television

[Convention I] [AtMﬂ Plus]

TR, !: 1 5 £ 7T i B o e B
A B A B

ETH




SlowMoVideo

Bachelor thesis Simon Eugster

slowmoVideo

Welcome

slowmoVideo is an OpenSource program that creates slow-motion videos from your footage.

But it does not simply make your videos play at 0.01x speed. You can smoothly slow down and speed up your
footage, optionally with motion blur.

How does slow motion work? slowmoVideo tries to find out where pixels move in the video (this
information is called Optical Flow), and then uses this information to calculate the additional frames.

Features
+ Videos in any format supported by fimpeg can be loaded. Image sequences can also be loaded, so, if
you did a timelapse with too few frames, slowmoVideo may help as well.
» slowmoVideo does not work with a constant slowdown factor but with curves that allow arbitrary
time accelereation/deceleration/reversal.
« Motion blur can be added, as much as you want.
The most recent changes to slowmoVideo can be read in the changelog.
Technologies
These parts are used by slowmoVideo:
* Qt4 as C++ programming framework
+ GPU-KLT+FLOW for calculating the optical flow
for reading and writing video files

Thesis

1 wrote slowmoVideo as my bachelor thesis at ETH Zurich. The thesis can be read here (PDF, 2 MB).

(c) 2011 Simon A. Eugster (Granjow)

http://slowmaovideo.granjow.net/



http://slowmovideo.granjow.net/
Eugster/Hair.avi
Eugster/Timelapse-retimed.avi
Eugster/Smoke-Ultraslow.avi

Optical Flow

e Parametric motion models




Parametric (Global) Motion
Models

Global motion models offer

— more constrained solutions than smoothness (Horn-
Schunck)

— Integration over a larger area than a translation-only
model can accommodate (Lucas-Kanade)
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Parametric (Global) Motion
Models

2D Models:

(Translation)

Affine

(Quadratic

Planar projective transform (Homography)

3D Models:
Instantaneous camera motion models

Homography+epipole
Plane+Parallax



E(h) =2 [H(x+h)- [®]
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» Transformations/warping of image

E(h)y=2 [I(x+h)- [,®]

x MR

Translations

h=

OX
Oy

_

=

—



What about other types of motion?
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Generalization

» Transformations/warping of image

EA, h=2 [I(Ax+h)- I,(x)]>

x MR

Affine:

A =

h =

OX

0y

-

—



56

Generalization

Affine: A=
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Example: Affine Motion

u(x,y)=a,+a,x+a,y

v(x,y)=a, +ax+a,y

Substituting into the B.C. Equation:
I.u+1 -v+I =0

[.(a,+ta,x+a,y)+1 (a,+ax+agy)+1, =0

Each pixel provides 1 linear constraint in 6 global unknowns
(minimum 6 pixels necessary)

Least Square Minimization (over all pixels):

Err(a) = Z [[x (@, +a,x+ay)+1 (a,+asx+agy)+1, ] 2



ulx, y) = ap,+a,x+ a,y

i

vix,y)=az;ta,x+ayy

p

-----------

,,,,,,,,,,,

,,,,,,,,,,,
...........

..........

X +u(x;

[(x+ui(x; a), t-1)= I(x, t)

(Brighiness Constancy Asswmption)



KLT: Good features to keep tracking

.t‘
JI'
o.o2f f__.n-.,{
Figure 1: Three frame details from Woody Allen's -
Manhatian, The details are from the Ist, 11th, and  £°" /
21zt frames of a a-ubaacquenc-r from the movie, E A
— — -] I ! .t
a2 '.f’
s 25 zs
23] 2= 2 N —er > _
s
@ E‘s% lzsi = '
I T T e A
< - &= . o

Simple displacement is sufficient between consecutive
frames, but not to compare to reference template

ETH
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Generalization

* Transformations/warping of 1mage

EC) = [ Ax )= L]

Planar perspective: A =

a, a;
a. a
d, 1

—
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Generalization

Aftine +

Planar perspective: A =| a,
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Generalization

* Transformations/warping of image

E(h) =2 [I(f(x, ) - [x)]°

Other parametrized transformations
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Generalization

Other parametrized transformations
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2D Motion Models summary

Quadratic — instantaneous
approximation to planar motion

U=q +g.x+qyv+ ff?Iz T XV

V=0, X GV 4+ gy

Projective — exact planar motion

= h+hx+hy
© ot hx+hy

e h,+hx+hy
T oh+hx+hy

and

H=X—-X, v=y-—y




Advanced parametric model

e Optical flow constrained by non-rigid face model

Flexible flow for 3D nonrigid tracking and shape recovery,
Brand and Bhotika, CVPR2001.

ETH
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3D Motion Models summary

Instantaneous camera motion:

~

w=—xyQy + (14, - yQ, +(Ty ~ T,/ Z

Global parameters:[Q,,Q,,Q,.T,,T,, T, [V ==+ y)Q; + 330, —xQ, +(T, ~T,x)/7
Local Parameter: [£(X.)) y
e hx+h,y+h, +7v1
Homography+Epipole fox +hyy+hy 71,
o hx by + b +y1
Global parameters: Py hostys 10 0  hox+ Ayt by 70
Local Parameter: |7(%) and: #=x'-x, v=yp-—y
Residual Planar Parallax Motion | |, _ (- 7V . 4,
e
Global parameters: f15s 1, 3
Local Parameter: ¥{x, ) v=y"—x=—L -1,
L+71,
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Residual Planar Parallax Motion
(Plane+Parallax)

Original sequence Plane-aligned sequence Recovered shape

Block sequence from [Kumar-Anandan-Hanna’94]

“Given two views where motion of points on a
parametric surface has been compensated, the
residual parallax is an epipolar field”
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Residual Planar Parallax Motion

epipole

The intersection of the two line constraints
uniquely defines the displacement.




interlacirb \ hand over jaw
Figure 1: Model-based tracking is robust to degraded im-
ages and transient occlusions. Dots show flexed model in 3/4,

frontal, and profile view. Dots on face show where the image
ls sampled. Dots on neck encode 3D motion parameters.

Brand, M.E.; Bhotika, R., "Flexible Flow for 3D Nonrigid Tracking and Shape
Recovery", IEEE Computer Society Conference on Computervision and Pattern
Recognition (CVPR), ISSN: 1063-6919, Vol. 1, pp. 315-322, December 2001




Optical Flow

e SSD tracking
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Correlation and SSD

* For large displacements, do template matching as
was used 1n stereo disparity search.
— Define a small area around a pixel as the template

— Match the template against each pixel within a search
area in next image.

— Use a match measure such as correlation, normalized
correlation, or sum-of-squares difference

— Choose the maximum (or minimum) as the match
— Sub-pixel interpolation also possible
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SSD Surface — Textured area
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SSD Surface

-- Edge
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SSD Surface — homogeneous areca



Discrete Search vs. Gradient Based
Estimation

Consider image | translated by #,, v,
IO(xay): I(xay)
Il(x+u09y+v0): I(an/)+771(an/)

E(u,v)= E(I(x,y)—ll(x +u, v +v))

= E(I(x,y)—[(x—uo +1t, Y=V, +v) =1, (X, 1))’

Discrete search simply searches for the best estimate.
Gradient method linearizes the intensity function and solves for
the estimate



Optical Flow

* Bayesian flow
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Bayesian Optic Flow

* Some low-level human motion 1llusions can be
explained by adding an uncertianty model to
Lucas-Kanade tracking

* Theories from Psychology about normal flow
fusion:

— (VA) vector average (of normal motions)
— (I0C) intersection of constraints (e.g., Lucas-Kanade):

/77 >
W




Rhombus Displays

Vy /

http://www.cs.huji.ac.il/~yweiss/Rhombus/



http://www.cs.huji.ac.il/~yweiss/Rhombus/
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Brightness constancy with noise:

I(x,pt) =I(x+ v ALy +v AL t+ A + 1

Assume (Gaussian noise, smooth surfaces, locally constant; take first order
linear approximation:
p{I{ _3‘[.;,}-':-, r}l ]1;\} [

i i
Il \ i 2
s wilxp) (Lxpthv, + Lixgp v, + Llxy,t))” dedy

exp
20° xyp

Prior favoring slow speeds:
P(v) == exp(-||v]|*/26,°).
Assume noise 1s independent across location; apply Bayes:
P(I) o< P uiﬂPI{x:,}‘, v),
I
With constant window w=1,

PN = exp | —Pf20," - — (Texy) v+ 1xyv, + 13% dx dy
\ ....f:r '_1\_'5.]_.' ! . ¥

Form ‘normal cquations’ to arrive at. . ..



Lucas-Kanade with uncertainty:

: - ~1
/ rht=— E&L \ ;

{Tir' i ‘Fﬁ."].'

)

\E I, 5 12 _}_g_r‘ } ‘. = LL r

One parameter: ratio of observation and prior
gaussian spread.

http://www.cs.huji.ac.il/~yweiss/Rhombus
[Weiss, Simoncelli, Adelson Nature Neuroscience 2002]



Likelihood Likelihood Likelihood
Stimulus at location a at lecation b at location ¢




84

image

likelihood 1 likelihood 2

posterior

Figure 4: The response of the Bayesian estimator to a fat rhombus. (replotted from
Weiss and Adelson 08)
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likelihood 1 likelihood 2

posterior

Figure 3: The response of the Bayesian estimator to a narrow rhombus. (replotted

from Weiss and Adelson 98)
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Image
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