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Last lecture: Optical Flow

* Brightness constancy equation

Lu+l v+l =0

* Aperture problem

I:U’Uu—I—Iy’U—FIt: 0
(1 constraint)
%, v (2 unknowns) isophote I(t)=I

e Solution:
— regularize (trade-off brightness constancy and smoothness)

E(h)=2 [I(x+h)- [,®]

x MR

isophote I(t+1)=I

— And many more (today)
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SlowMoVideo

Bachelor thesis Simon Eugster

slowmoVideo

Welcome

slowmoVideo is an OpenSource program that creates slow-motion videos from your footage.

But it does not simply make your videos play at 0.01x speed. You can smoothly slow down and speed up your
footage, optionally with motion blur.

How does slow motion work? slowmoVideo tries to find out where pixels move in the video (this
information is called Optical Flow), and then uses this information to calculate the additional frames.

Features
+ Videos in any format supported by fimpeg can be loaded. Image sequences can also be loaded, so, if
you did a timelapse with too few frames, slowmoVideo may help as well.
» slowmoVideo does not work with a constant slowdown factor but with curves that allow arbitrary
time accelereation/deceleration/reversal.
« Motion blur can be added, as much as you want.
The most recent changes to slowmoVideo can be read in the changelog.
Technologies
These parts are used by slowmoVideo:
* Qt4 as C++ programming framework
+ GPU-KLT+FLOW for calculating the optical flow
for reading and writing video files

Thesis

1 wrote slowmoVideo as my bachelor thesis at ETH Zurich. The thesis can be read here (PDF, 2 MB).

(c) 2011 Simon A. Eugster (Granjow)

http://slowmaovideo.granjow.net/



http://slowmovideo.granjow.net/
Eugster/Hair.avi
Eugster/Timelapse-retimed.avi
Eugster/Smoke-Ultraslow.avi

Optical Flow

e Parametric motion models




Parametric (Global) Motion
Models

Global motion models offer

— more constrained solutions than smoothness (Horn-
Schunck)

— Integration over a larger area than a translation-only
model can accommodate (Lucas-Kanade)



Parametric (Global) Motion
Models

2D Models:

(Translation)

Affine

(Quadratic

Planar projective transform (Homography)

3D Models:
Instantaneous camera motion models

Homography+epipole
Plane+Parallax



E(h) =2 [H(x+h)- [®]



» Transformations/warping of image

E(h)y=2 [I(x+h)- [,®]

x MR

g —

OX
Oy

B —

Translations h =




What about other types of motion?
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Generalization

» Transformations/warping of image

EA, h=2 [I(Ax+h)- I,(x)]>

x MR

Affine:

A =

h =

OX

0y

-

—
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Generalization

Affine: A=
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Example: Affine Motion

u(x,y)=a,+a,x+a,y

v(x,y)=a, +ax+a,y

Substituting into the B.C. Equation:
I.u+1 -v+I =0

[.(a,+ta,x+a,y)+1 (a,+ax+agy)+1, =0

Each pixel provides 1 linear constraint in 6 global unknowns
(minimum 6 pixels necessary)

Least Square Minimization (over all pixels):

Err(a) = Z [[x (@, +a,x+ay)+1 (a,+asx+agy)+1, ] 2



ulx, y) = ap,+a,x+ a,y

i

vix,y)=az;ta,x+ayy

p

-----------

,,,,,,,,,,,

,,,,,,,,,,,
...........

..........

X +u(x;

[(x+ui(x; a), t-1)= I(x, t)

(Brighiness Constancy Asswmption)



KLT: Good features to keep tracking
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Figure 1: Three frame details from Woody Allen's -
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Simple displacement is sufficient between consecutive
frames, but not to compare to reference template
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Generalization

* Transformations/warping of 1mage

EC) = [ Ax )= L]

Planar perspective: A =|a, a, a,

—
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Generalization

Aftine +

Planar perspective: A =| a,
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Generalization

* Transformations/warping of image

E(h) =2 [I(f(x, ) - [x)]°

Other parametrized transformations
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Generalization

Other parametrized transformations
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2D Motion Models summary

Quadratic — instantaneous
approximation to planar motion

U=q +g.x+qyv+ ff?Iz T XV

V=0, X GV 4+ gy

Projective — exact planar motion

= h+hx+hy
© ot hx+hy

e h,+hx+hy
T oh+hx+hy

and

H=X—-X, v=y-—y




Advanced parametric model

e Optical flow constrained by non-rigid face model

Flexible flow for 3D nonrigid tracking and shape recovery,
Brand and Bhotika, CVPR2001.

ETH
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3D Motion Models summary

Instantaneous camera motion:

~

w=—xyQy + (14, - yQ, +(Ty ~ T,/ Z

Global parameters:[Q,,Q,,Q,.T,,T,, T, [V ==+ y)Q; + 330, —xQ, +(T, ~T,x)/7
Local Parameter: [£(X.)) y
e hx+h,y+h, +7v1
Homography+Epipole fox +hyy+hy 71,
o hx by + b +y1
Global parameters: Py hostys 10 0  hox+ Ayt by 70
Local Parameter: |7(%) and: #=x'-x, v=yp-—y
Residual Planar Parallax Motion | |, _ (- 7V . 4,
e
Global parameters: f15s 1, 3
Local Parameter: ¥{x, ) v=y"—x=—L -1,
L+71,
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Residual Planar Parallax Motion
(Plane+Parallax)

Original sequence Plane-aligned sequence Recovered shape

Block sequence from [Kumar-Anandan-Hanna’94]

“Given two views where motion of points on a
parametric surface has been compensated, the
residual parallax is an epipolar field”
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Residual Planar Parallax Motion

epipole

The intersection of the two line constraints
uniquely defines the displacement.




Epipolar Geometry

Left view Right view

By Arne Nordmann (norro)- Own work (Own drawing), CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1702052

ETH
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Residual Planar Parallax Motion

epipole

The intersection of the two line constraints
uniquely defines the displacement.




Optical Flow

* Bayesian flow
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Bayesian Optic Flow

* Some low-level human motion 1llusions can be
explained by adding an uncertianty model to
Lucas-Kanade tracking

* Theories from Psychology about normal flow
fusion:

— (VA) vector average (of normal motions)
— (I0C) intersection of constraints (e.g., Lucas-Kanade):

/77 >
W




Rhombus Displays

Vy /

http://www.cs.huji.ac.il/~yweiss/Rhombus/



http://www.cs.huji.ac.il/~yweiss/Rhombus/
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Brightness constancy with noise:

I(x,pt) =I(x+ v ALy +v AL t+ A + 1

Assume (Gaussian noise, smooth surfaces, locally constant; take first order
linear approximation:
p{I{ _3‘[.;,}-':-, r}l ]1;\} [

i i
Il \ i 2
s wilxp) (Lxpthv, + Lixgp v, + Llxy,t))” dedy

exp
20° xyp

Prior favoring slow speeds:
P(v) == exp(-||v]|*/26,°).
Assume noise 1s independent across location; apply Bayes:
P(I) o< P uiﬂPI{x:,}‘, v),
I
With constant window w=1,

PN = exp | —Pf20," - — (Texy) v+ 1xyv, + 13% dx dy
\ ....f:r '_1\_'5.]_.' ! . ¥

Form ‘normal cquations’ to arrive at. . ..



Lucas-Kanade with uncertainty:

: - ~1
/ rht=— E&L \ ;

{Tir' i ‘Fﬁ."].'

)

\E I, 5 12 _}_g_r‘ } ‘. = LL r

One parameter: ratio of observation and prior
gaussian spread.

http://www.cs.huji.ac.il/~yweiss/Rhombus
[Weiss, Simoncelli, Adelson Nature Neuroscience 2002]



Likelihood Likelihood Likelihood
Stimulus at location a at lecation b at location ¢
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image

likelihood 1 likelihood 2

posterior

Figure 4: The response of the Bayesian estimator to a fat rhombus. (replotted from
Weiss and Adelson 08)
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likelihood 1 likelihood 2

posterior

Figure 3: The response of the Bayesian estimator to a narrow rhombus. (replotted

from Weiss and Adelson 98)
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Image
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Optical Flow

e SSD tracking
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Correlation and SSD

* For large displacements, do template matching as
was used 1n stereo disparity search.
— Define a small area around a pixel as the template

— Match the template against each pixel within a search
area in next image.

— Use a match measure such as correlation, normalized
correlation, or sum-of-squares difference

— Choose the maximum (or minimum) as the match
— Sub-pixel interpolation also possible
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SSD Surface — Textured area
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SSD Surface

-- Edge
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SSD Surface — homogeneous areca



Discrete Search vs. Gradient Based
Estimation

Consider image | translated by #,, v,
IO(xay): I(xay)
Il(x+u09y+v0): I(an/)+771(an/)

E(u,v)= E(I(x,y)—ll(x +u, v +v))

= E(I(x,y)—[(x—uo +1t, Y=V, +v) =1, (X, 1))’

Discrete search simply searches for the best estimate.
Gradient method linearizes the intensity function and solves for
the estimate



Visual Computing:

Video Compression

Prof. Marc Pollefeys



Perception of motion

Human visual system is specifically sensitive to
motion

Eyes follow motion automatically

Some distortions are not as perceivable as in
image coding (would be if we froze frame)

No good psycho-visual model available
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Perception of motion

* Visual perception is limited to <24Hz

— A succession of images will be perceived as
continuous if frequency is sufficiently high

— Cinema 24Hz, TV 25(50) Hz

 Still need to avoid aliasing (wheel effect)

— High-rendering frame-rates desired in computer
games (needed due to absence of motion blur)

* Flicker can be perceived up to >60Hz in
particularin periphery
ETH Issue addressed by 100Hz TV




Bloch’s Law

100

50

v

10/6/15




Bloch’s Law - Implications

* Enforceslimits on framerate for animations and videos (min 10
Hz)

49

10/6/15
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Video Format

« 2D+t : Video sequence

Slides Aljoscha Smolic



Interlaced video format

top field bottom field

« 2 temporally shifted half images, increase of frequency
25 -> 50 Hz

« Reduction of spatial resolution
+ Full Image representation: progressive

m Slides Aljoscha Smolic




Why compress video?

* Raw HD TV signal 720p@50Hz

1280x720x50x24bits/s = 1.105.920.000bits/s
>1Gb/s

(€.9.1920x1080@60Hz>1Gb/s)

Only 20Mb/s HDTV channel bandwidth
Required compression factor of 60
(0.40bits/pixel on average)

ETH




Video Compression
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Lossy video compression

* Take advantage of redundancy
— Spatial correlation between neighboring pixels

— Temporal correlation between frames

* Drop perceptually unimportant details




Temporal Redundancy

* Take advantage of similarity between
successive frames




FRACTION OF CHAMGED FIXELS PER FRAME (%)
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Temporal processing

* Usually high frame rate: Significant temporal redundancy

* Possible representations along temporal dimension:

— Transform/subband methods

- Good for textbook case of constant velocity uniform
global motion

— Inefficient for nonuniform motion, l.e. real-world motion

— Requires large number of frame stores

— Leads to delay (Memory cost may also be an issue)
— Predictive methods

- Good performance using only 2 frame stores

- However, simple frame differencing in not enough...

m Slide from John G. Apostolopoulos




Video Compression

* Goal: Exploit the temporal redundancy
* Predict current frame based on previously coded frames

* Three types of coded frames:

— I-frame: Intra-coded frame, coded independently of all
other frames

— P-frame: Predictively coded frame, coded based on
previously coded frame

— B-frame: Bi-directionally predicted frame, coded based

on both previous and future coded frames
/N ’/\ /\’
ETH | frame P-frame B-frame

Slide from John G. Apostolopoulos




Temporal Redundancy Reduction

 |[frames are independently encoded
P frames are based on previous |, P frames

— Can send motion vector plus changes
 Bframes are based on previous and following | and P frames
— |In case something is uncovered

ETH




Temporal Redundancy Reduction

Macro blocks

o a———

- Current
Best Match Position Macrablock




Temporal Redundancy
Reduction

Search Area

Macro Block
16X16 Pixels

Motion Vector



Video compressor diagram

_ residual _
Video Temporal > Spatial
Input
P model S model coefficients
| Entropy | Encoded
encoder [ oufput
vectors

Stored
Frames




Question

* When may temporal redundancy reduction
be ineffective?




Answer

* When may temporal redundancy reduction
be ineffective?

— Many scene changes
— High motion




Non-Temporal Redundancy

* Many scene changes




Non-Temporal Redundancy

 Sometimes high motion




Temporal processing:
Motion-compensated prediction

* Simple frame differencing fails when there is motion
* Must account for motion
— Motion-compensated (MC) prediction
* MC-prediction generally provides significant improvements
* Questions:
— How can we estimate motion?

— How can we form MC-prediction?

Slide from John G. Apostolopoulos




Temporal processing:
Motion estimation

* |deal situation:
— Partition video into moving objects
— Describe object motion

— Generally very difficult

* Practical approach: Block-Matching Motion Estimation
— Partition each frame into blocks, e.g. 16x16 pixels
— Describe motion of each block
— No object identification required

— Good, robust performance

m Slide from John G. Apostolopoulos




Block-matching motion estimation

]
2

|
L]

1
1
s
T
|
— 14

v

Motion Vector

]
L —
L
L~

e\

(mv,, mv.,) 13
| / 2P ...r""#
f'"'""'

Reference Frame Current Frame

* Assumptions:
- Translational motion within block:

Syny k)= fly—mvyn, —mv, k)
- All pixels within each block have the same motion

e ME Ar'gorithm:

1) Divide current frame into non-overlapping N;xN, blocks

2) For each block, find the best mafching block in reference frame

*  MC-Prediction Algorithm:

m - Use best matching blocks of reference frame as prediction of

IDlDCl(S in current tframe

Slide from John G. Apostolopoulos



Block-matching:
determining the best matching block

* For each block in the current frame search for best matching
block in the reference frame

— Metrics for determining “best match”:

MSE = Z Z[ﬁf(ﬂl_,}?l,ffﬂ”_)—ﬁf(ﬂl —mv,, N,y — }??1;__,_,in.gf):z

(my.n> )eBlock

MAE = Z Z‘f(”l 5, kﬂ”-)_ f(”l —mv.n, —mv,, kf'i’f)

(ny.n2 )eBlock

— Candidate blocks:  Allblocksin. e.g.j(i 32ﬁ_r32)pixe1 area

— Strategies for searching candidate blocks for best match

— Full search: Examine all candidate blocks
— Partial (fast) search: Examine a carefully selected subset

* Estimate of motion for best matching block: “motion vector”

m Slide from John G. Apostolopoulos




SSD Surface — Textured area

ETH (from last lecture)




Motion vector and motion vector field

* Motion vector

— Expresses the relative horizontal and vertical offsets
(mv;,mv,), or motion, of a given block from one
frame to another

— Each block has its own motion vector
e Motion vector field

— Collection of motion vectors for all the blocks in a
frame

Slide from John G. Apostolopoulos



Example of Fast Motion Estimation Search:
3-Step (Log) Search

 Goal: Reduce number of search
O O O points

. Exqmple: (J_r?_.ir?]search area

* Dots represent search points

* Search performed in 3 steps

(coarse-to-fine):

Step 1: @ (+4pixels)

Step 2: @ (+2 pixels)

Step 3: @ (+1pixels)

* Best match is found at each step

O ® ® * Next step: Search is centered

around the best match of prior step

* Speedup increases for larger

m search areas
Slide from John G. Apostolopoulos




Motion Vector Precision?

* Motivation:
— Motion is not limited to integer-pixel offsets
— However, video only known at discrete pixel locations

— To estimate sub-pixel motion, frames must be spatially
interpolated

* Fractional MVs are used to represent the sub-pixel motion
* Improved performance (extra complexity is worthwhile)

* Half-pixel ME used in most standards: MPEG-1/2/4

Why are half-pixel motion vectors better?

— Can capture half-pixel motion

— Averaging effect (from spatial interpolation) reduces
prediction error — Improved prediction

— For noisy sequences, averaging effect reduces noise —

m |rnpr0vec:| com pression
Slide from John G. Apostolopoulos




Practical Half-Pixel Motion Estimation
Algorithm

* Halfpixel ME (coarse-tine) algorithm:

1) Coarse step: Perform integer motion estimation on blocks; find
best integer-pixel MV

2) Fine step: Refine estimate to find best half-pixel MV
a) Spatially interpolate the selected region in reference frame

b) Compare current block to interpolated reference frame

block

c) Choose the integer or halt-pixel offset that provides best
match

* Typically, bilinear interpolation is used for spatial interpolation

m Slide from John G. Apostolopoulos




Example: MC-Prediction for
Two Consecutive Frames

Previous Frame Current Frame
(Reference Frame) o be Predicted)

m Reference Frame Predicted Frame
Slide from John G. Apostolopoulos




Example: MC-Prediction for
Two Consecutive Frames

Prediction of
Current Frame

Prediction Error
(Residual)

Slide from John G. Apostolopoulos



MC-prediction

Image of a video sequence

Without : With
Motion Motion
compensation compensation

m Slide from Aljoscha Smolic




Example MC

CIF Format
(352x288)

focemun h281_medit

. . . . . Slide from
Without motion compensation With motion compensation pjoscha smolic




Example MC

QCIF Format
(176x144)

sherit, it serth2el_meod!
m Without motion compensation With motion compensation Slide from

Aljoscha Smolic



Block Matching Algorithm: Summary

* [ssues:

— Block size?

— Search range?

— Motion vector accuracy?
* Motion typically estimated only from luminance
* Advantages:

— Good, robust performance for compression

— Resulting motion vector field is easy to represent (one MV
per block) and useful for compression

— Simple, periodic structure, easy VLS| implementations
* Disadvantages:

— Assumes translational motion model — Breaks down for
more complex motion

— Often produces blocking artifacts (OK for coding with
m BlOCk DCT) Slide from John G. Apostolopoulos




Bidirectional MC prediction

ﬂ,/"‘

/ /,/""'/ -

2 T2 | 2L

16 1 151,

5 /_’,,"11 12 - T ” 42

0 15 9 | ” 16
Previous Frame Current Frame Future Frame

* Bi-Directional MC-Prediction is used to estimate a block in the
current frame from a block in:

1) Previous frame
2) Future frame

3) Average of a block from the previous frame and a block
from the future frame
Slide from

m 4) Neither, i.e. code current block without prediction ;1 6 Apostolopouios




Example bidirectional prediction

e Prediction error with unidirectional (left) and bidirectional (right)
prediction




MC-Prediction and Bi-Directional
MC-Prediction (P-and B-frames)

* Motion compensated prediction: Predict the current frame
based on reference frame(s) while compensating for the motion

* Examples of block-based motion-compensated prediction
(P-frame) and bi-directional prediction (B-frame):

]

ﬁﬁg

13
|~

Previous Frame
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Slide from John G. Apostolopoulos



Video compression

* Main addition over image compression:
— Exploit the temporal redundancy
* Predict current frame based on previously coded frames

* Three types of coded frames:

— [-frame: Intra-coded frame, coded independently of all
other frames

— P-frame: Predictively coded frame, coded based on
previously coded frame

— B-frame: Bidirectionally predicted frame, coded based
on both previous and future coded frames

/N /N

Slide from John

m I frame P-frame -frame G. Apostolopoulos




Example Use of I-,P-,B-frames:
MPEG Group of Pictures (GOP)

* Arrows show prediction dependencies between frames

MPEG GOP

Slide from John G. Apostolopoulos



Group of Pictures (GOP)

e Starts with an I-frame
* Ends with frame right before next I-frame

* “Open” ends in B-frame, “Closed” in P-frame
— (What is the difference?)

* MPEG Encoding a parameter, but ‘typical :
— | BBPBBPBBI
— | BBPBBPBBPBBI

 Why not have all P and B frames after initial I?

ETH




Example Compress. Performance

Type Size Compression

1 18 KB 7:1
P o KB 20:1
B 2.5 KB 50:1
Avg 4.8 KB 27:1

Note, results are Variable Bit Rate,
even If frame rate Is constant
ETH




Summary of Temporal Processing

* Use MC-prediction (P and B frames) to reduce temporal
redundancy

* MC-prediction usually performs well; In compression have a
second chance to recover when it performs badly

* MC-prediction yields:
— Motion vectors

—  MC-prediction error or residual — Code error with
conventional image coder

* Sometimes MC-prediction may perform badly
—  Examples: Complex motion, new imagery (occlusions)
— Approach:
1. Identity frame or individual blocks where prediction fails
2. Code without prediction

m Slide from John G. Apostolopoulos




Basic Video Compression Architecture

* Exploiting the redundancies:
— Temporal: MC-prediction (P and B frames)
— Spatial: Block DCT
— Color: Color space conversion

* Scalar quantization of DCT coefticients

* Zigzag scanning, runlength and Hutfman coding of the
nonzero quantized DCT coefficients

m Slide from John G. Apostolopoulos




Example Video Encoder

Input Buffer fullness
Video Residual
Signal| RGB [ ]
? - Quantize {I—E‘:ufﬂnan ]74 Buffer | >
YUV 3 oding
Output
Bitstream
fnverse
MV data
Inverse
DCT

0

MC-Prediction C?
[ Motion ] (Frame Store|
C tion®
Dmpe:nsa ) Previous
MV data Reconstructed
Frame
Motion l

EstimaﬁunJ |
[@] Jehn G. Apostolopaulos




Example Video Decoder

Reconstructed
Residual Frame

. Huffman Inverse Inverse [
Decoder Quantize DCT @ =LYUV = RG%_‘
Input ¥ O.'.:vtput
Bitstream :_rdeuf
igna
MC-Prediction|  (E o store)
Previous
MV data Motion Reconstructed
Compensation Frame

Slide from John G. Apostolopoulos



Hybrid Coding (MC+DCT)

DPCM

- ! i Transform/ . Quant
TH I ’ Scal/Quant I Transf. coeffs
Split into Decoder | Scaling & Inv.
Macroblocks Transform
16x16 pixels Entropy
1 Coding
Output
Motion- Video .
Compensation Signal
1 ‘Motion
- Data
Motion
- —

Estimation




MPEG-4 part 10 aka H.264

Input
Video
Signal

ET P TR
1 | I Y

TR

Split into
Macroblocks
16x16 pixels

Decoder

i__'_'._' Scal /Quant.

. Coder
C,Gmr(.)l Control
e SO \
Transform/ k"
ransform * Quant. ‘~1
Transf. coeffs®,

i H Scaling & Inv.
- :r——-'l'"“*' Transform
| 1: . ; Entrq Py |
- : Coding
De-blocking
O Intra-frame ALz
! Prediction
i Qutput
N Motion- Video
Intra/Inter Cﬂmp,en sation v
i I Motion
H - Data
Motion

Estimation




Current Video Compression Standards

* International Telecommunication Union (ITU-T)
— H.261:1991
— H.262:1994
— H.263:1995 Version 1, versch. Erweiterungen "H.263+/++"
~+ H.264: Ende 2002

International Standardization Organization (ISO) : Moving Picture Experts Group
(MPEG)

- MPEG-1:150 11572 :1992

— MPEG-2:150 13818 : 1994 (identisch mit H.262)

— MPEG-4 :1SO 14496 : 1999 (teilweise identisch mit H.263 V1)
— — MPEG-4 Part 10 (AVC): 2003 (identisch mit H.264)

'Joint Video Team" (JVT)

3




Actual Standard H.264/AVC

= Still hybrid video codec (MC-DCT) as other standards before
»  Significant over all improvement by improvement of all parts
« Motion compensation
« Variable block sizes (16x16, 16x8, 8x8, 8x4, 4x4)
« V4 pixel motion compensation
« Multiple reference frames
« Intra prediction
+ Integer 4x4 transform
+ In-loop deblockingfilter
+ Entropycoding
« Arithmetic coding CABAC
ETH




Objective quality measure: PSNR

" e Error for one pixel, difference between
original and decoded value

* Mean-Squared-Error, MSE e.g. over an
image

» Peak-Signal-to-Noise-Ratio

ETH

e(v,h)=x(v.,h)—x(v.h)

1 N M ,
Ce = \/MZZE (v, h)

PSNR =

v=1 h=1

|maximum value of x|

PSNR =10-log,,

PSNR =10-log,,
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Subjective evaluation

e MOS: Mean opinion score

5 Imperceptible

4 Perceptible, but not annoying
3 Slightly annoying

2 Annoying

1 Very annoying

* Subjective Tests with many participants and statistical evaluation
e Representative test material
* Careful selection of test conditions (display, light, disturbances, ...)

m Slides Aljoscha Smolic




Rate-Distortion Curve

Raven (1280 x 720, 60 Hz) Book (1920 x 1080, 24 Hz)
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M Figure 7. Left: Objective performance for the "Raven" sequence (left) and "Book" sequence (right) comparing H.264/MPEG4-AVC
HP, MP (both using CABAC and CAVLC), and MPEG2 MP@HL.
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Milestones in Video Coding

Variable block size Variable block size Frame
PSNR 1 (16x16-4x4)+ (16x16 — 8x8) Halt-pel Difference coding
[dB] quarter-pel + (H.263, 1996) + motion compensation (H.120 1988)
multi-frame quarter-pel (MPEG-1 1993 ‘
40 I motion compensation ~ motion compensation __—~ MPEG-2 1994) ’ 7
(H.26L, 2001) (MP‘EB-d, 1998)  «~
: : Foreman
36 Bit-rate Reduction: 75% ~_—
35 LR AR R R R [ L) < 10 HZ’ QCIF
34 } e a 100 frames
P HMepienishment e \\
.120) N\
32r Integer-pel \
/ motion \
30 F compensation
/ (H.261, 1991)
Intraframe
28 // DCT coding ~
(JPEG, 1990) Rate [kbit/s]
.
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Thomas Wiegand: Digital Image Communication
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Milestones in Video Coding

Variable block size Variable block size Frame
PSNR (16x16 — 4x4) + (16x16 — 8x8) Half-pel Difference coding
[dB] quarter-pel + (H.263, 1996) + motion compensation  (H 120 1988)
multi-frame quarter-pel (MPEG-1 1993 ,
40 I motion compensation  motion compensation/ MPEG-2 1994) v

MPEG-4, 1998

(H.26L, 2001) ( )
g
38 o
36

34t Visual Comparison <=
DCT coding

32

30

28 r // -
(JPEG, 1990) Rate [kbit/s]

0 100 200 300

Thomas Wiegand: Digital Image Communication Hybrid Video Coding 28
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Examples H.264/AVC
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Compression ratio




http://en.wikipedia.org/wiki/High Efficiency Video Coding
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https://www.thebroadcastbridge.com/content/entry/10029/h.264-versus-hevc-understanding-the-differences

Selected topics:
CNN & Radon transform
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