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Convolutional Neural Network

* Motivation for deep learning
* Linear classifier

* Activation functions

* Optimization

* Back propagation

* Motivation for CNN

* Convolution layer




Motivation

e Recall: handcrafted convolutional kernels

 What if we want to find more complexrelation? Eg. Classify
the image as a cat?




Deep Learning

e What we will see

arg@min L(y, f(x, 9))




Data-Driven Approach

* Goal: summarize the input — output
relationship directly from a collection of data

* Overview
argmin L(y, f(x,0))
0

— X input

— 0 kernel weights
— f(x, 0) prediction
— v learning target
— L loss function
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A Simplified Problem

* Task: separate black dots from
white ones %2 |

* Linear classifier:
f(x,0) =Wx+b

Called fully connected layer:
weights interact with all
dimension of data
simultaneously

* Model parameters 8 = {W,b} ="
ETH




Loss Function

* Three classifier
H,,H,,H; , howto %2
compare ?

— Loss function!

 Aloss function
guantifies the quality
of a classifier

Credit: Wikipedia
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Softmax (Logistic) Classifier

* scores=unnormalized log probabilities of different classes =»

maximize the probability
esi,k

5
Zje b

P(Y=k|X=xl)= =Pi,k,Si=f(xi,9)

Si,y

e (Softmax) Loss L(y,f(x, 9)) = — log -,V EN
* Minimize the negative log likelihood of the correct class
* Ifonly twoclass y; € {0,1} and one score: logistic loss

S

1 e
L(y, f(x,0)) =7 ) ¥ilogT—s+ (1 - ;) log

1+e°

ETH




Limitations for Linear Classifier

* Not all classes are linear separable

Class 1: Class 1: Class 1:
number of pixels > 0 odd 1<=L2norm<=2 Three modes
Class 2: Class 2: Class 2:
number of pixels > 0 even Everything else Everything else

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung




First Trial

e Address the limitation by stacking more layers
f(x, 9) — Wz(Wlx + bl) + b2

— Wlex ~+ (Wzbl ~+ bz)
* Collapseto the single layer case, not working

* Non-linearityis necessary:
f(x,0) = W,¢p(Wyx + by) + b,

¢ (x) — non-linear, scalar “activation” function
 Q: Whatis a good activation function?
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Activation Functions

* |Introduce non-linearity by activation functions

tanh
tanh(x)

ReLU
max(0, )

ETH

Sigmoid |

o(x) = 1+¢13—m i
-
_

Leaky RelLU

max(0.1z, )

Maxout
max(wi x + by, wiz + by)

ELU

T & =)
ae®—1) =<0

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Activation Functions

Activation Functions o(z) =1/(1+e™")
- Squashes numbers to range [0,1]
J - Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

fal
v

-10 10
1. Saturated neurons “kill” the

Sigmoid gradients
2. Sigmoid outputs are not
zero-centered
3. exp()is a bit compute expensive

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Activation Functions

Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung

ETH :




Activation Functions

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

RelLU - Not zero-centered output
(Rectified Linear Unit) - An annoyance:

hint: what is the gradient when x < 0?

Ans: Dead ReLU will never activate = usuallyinitialize with slightly positive biases
Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Activation Functions

TLDR: In practice:

- Use RelLU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU

- Try out tanh but don’t expect much

- Don’t use sigmoid

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Multilayer Perceptron (MLP)

e Stack several linear
classifiers

— One or more more
“hidden” layers

e Add activation function
between layers

* Candistinguish data that is credi Wikiped
not linearly separable

* “Universal approximator”

ETH :




Optimization

* Find the best weights (6) that minimize the
loss function

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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Optimization

Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y _train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

15.5% accuracy vs SOTA >95%

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Optimization

Strategy #2: Follow the slope

Slide Credit: Fei-Feili & JustinJohnson & Serena Yeung
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Optimization

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

oL i) G,
dx h —0

f(z +h) — f(z)
h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Gradient Descent

Ht+1 — 01’ ~+ )I,VLQ
« VL, gradient of L(y, f(x, 6,)) with respect to 6.
* A step size, control how far each step goes = “learning rate”

SN D
RS (T
% 2y .

S st

X il

m Credit: Alexander Amini et al.
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Gradient Descent

Credit: Wikipedia
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Stochastic Gradient Descent (SGD)

1 N
VoL(y, f(x,0)) =% ) VoL (vif (1, 6))

* When N is large, estimating the full gradient is
expensive

* Approximate sum using a minibatch of examples

1 B
VoL(y, f(x,0)) = Ez VoL(yif(x,0)),B<N

— B=32/64/128 common
* Make a step per minibatch = repeat with next batch

ETH




Back Propagation

* For linear classifier f(x,68) = Wx + b:

013
VGL(yl'f(xl’ 9)) af
* For MLP, use chain rule
dL 0L Jf
VHL(yi'f(xi'e)) — % — af . 006

* Back propagation: recursive application of the
chain rule to compute the gradients

ETH




Back Propagation

Gradients for vectorized code (x,y,zare This is now the

now vectors)  Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

“local gradient”

Z

oL
0z

/ gradients

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Back Propagation

Ve
OU®

X . '
O.’
y
s



https://www.youtube.com/watch?v=Ilg3gGewQ5U

Scaling Up

e So far (fully connected layer)
fx,0) =g, (Wy - gs(Wix + by) + -+ by)
* Dimension of weights

— W, € RP*¥ where D is the dimension of input data k the
dimension intermediate layers

— D = 2 for the point separation

— D =7 for image separation
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Scaling Up

e So far (fully connected layer)
fx,0) =g, (Wy - gs(Wix + by) + -+ by)
* Dimension of weights

— W, € RP*¥ where D is the dimension of input data k the
dimension intermediate layers

— D = 2 for the point separation
— D =3 x 10° forimage (1000 x 1000 px) separation

— Expensive!

ETH
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Motivation for Convolution Layer

* Sparseinteractions () @) @)

— Also called sparse
connectivity or
sparse weights

— Making the kernel
smaller than input

Credit: Goodfellow et al, Deep Learning (2017)
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Motivation for Convolution Layer

o Pa ra m ete r' S h a r| n g Credit: Goodfellow et al, Deep Learning (2017)

©
o
o
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ééé
000
40RO

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model

m has no parameter sharing so the parameter is used only once.

32



Motivation for Convolution Layer

* Equivariant representations

— Change the position of an object should not change the
classification of it

33


https://unsplash.com/photos/green-fabric-sofa-fZuleEfeA1Q
https://www.freeiconspng.com/img/40363

Motivation for Convolution Layer

* Hierarchical perception

— From low-level features to high-level concepts
— Motivated by perception systems

Preview [Zeiler and Fergus 2013] i o fmonyon s zeserman 20061
) ) Linearl
Low-level Mid-level | | High-level | Separab{e
features features features e
classifier
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Convolution Layer

* Preservation of spatial structure

— Fully connected layer stretched an image into 1D vector

input tivati
Fully ) Inpu W , activation
connected 11 | —> — 1[0 !

3072 10 x 3072 10
layer weights /

/ 32 /

Convolution
layer @>>O 28

3
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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Convolution Layer

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>® ”

convolve (slide) over all

spatial locations
32 28

1
Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung

3

Q: How many parameters has a convolutional filter if the inputimage has
N channels and the output feature map has D channels?

ETH .




Convolution Layer

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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https://cs231n.github.io/convolutional-networks/

Convolution Layer

* Kernel size: dimension of the weights
e Stride: the step size of applying kernel
* Applying 3 X 3 kernel on 7 X 7 grid with stride 1

42



Convolution Layer

* Kernel size: dimension of the weights
e Stride: the step size of applying kernel
* Applying 3 X 3 kernel on 7 X 7 grid with stride 2

43



Output Dimension

Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride 1=>(7-3)1+1=95
stride2=>(7-3)/)2+1=3
stride 3=>(7-3)/3+1=2.33:\

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Zero Padding

n practice: Common to zero pad the border

0|0|0|Of0O|O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Slide Credit: Fei-FeiLi & JustinJohnson & Serena Yeung
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Classification VS Regression

* Classification
— f(x4,0) as the score
— take the class with larger score

S.

- £(,f (6,0)) = — Ty log 57y i € Nosi = £ (<, 6)

* Regression
— f(x4,0) as the value
— can be used for classification by comparing value

—L(y,f(x,0)) = XX ly; —sil1? ,y; € RY, s = f(x;,6)
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Image Classification

mit':e

motor scooter leopard

contamer shi
N mite container sflp motor scooter legpard
[ | black widow lifeboat go-kart jaguar
Ii cockroach amphibian moped cheetah
i tick fireboat bumper car snow leopard
I starfish drilling platform golfcart Egyptian cat

mushroom cherry ascar cat

vertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

m Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks 12
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CNN Success Stories

* Early options: Ensemble, boosting, SVM, decision trees, MLP, ...
e 2012: AlexNet revolutionizes the field of Computer Vision
* CNN reduces classification error on ImageNet: 26% -> 16.4% error

Input data Convl Conv2 Conv3 Convd4 Conv5 FC6 FC7 FC8

44

7
Zaall 13x 13 x 384  13x 13 x 384 13x 13 X 256
27x 27 X 256
55x 55 X 96 —
1000

227% 227 X 3 4096 4096

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks 12
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CNN Success Stories

* CNN architectures keep getting refined

e 2014: VGG sets another key benchmark achieving 7.4% error on
ImageNet (second best: 14.8% error)

* Key architectureimprovements:

*Reduced kernel size } same receptive field with more
*Increased depth non-linearitigs

m Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large- 49
scale image recognition.” 2014




CNN Success Stories

* CNN architectures keep getting refined

e 2014: VGG sets another key benchmark achieving 7.4% error on
ImageNet (second best: 14.8% error)

* Key architectureimprovements:

*Reduced kernel size } same receptive field with more
*Increased depth non-linearities

m Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large- 50
scale image recognition.” 2014




CNN Building Blocks

* We have talked about convolutional layers, fully connected
layers and activation functions (RelLU)

 What about max pooling?
*Dimensionality reduction
*Introduces translation invariance (could remove)
*Helps to extract dominant features

51




CNN Building Blocks

* Max Pooling

Single depth slice

.| IO 2 (4
max pool with 2x2 filters
Suleen 7 | 8 and stride 2
3 | 2 I
1 | 2 SR
y

cs231n.github.io/convolutional-networks




CNN Success Stories

Very deep networks need new building blocks to achieve
their full potential

2015: ResNet achieves 3.57% error on imagenet and is the
foundational architecture many subsequentinnovations

Key architecture improvement: residual block
*Add skip connections -> more stable gradients
*Intuition: option to rely less on depth

X

Y

weight layer
F(x) ) relu

weight layer

X

identity

m Figure 2. Residual learning: a building block.
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Understanding CNNs

Activation

ETH

|~ T —
e TE TV sl

Input image patch J

g

e —

Zeiler et al, 2014
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Understanding CNNs

Layer 5

Activation

Input image patch

Zeiler et al, 2014
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Beyond Classification

» C(Classification networks are powerful backbones for other tasks

VGG
m Ghosh, Tarun Kanti, et al. "Multi-class probabilistic atlas-based whole heart 53
segmentation method in cardiac CT and MRI.”" 2021




Beyond Classification

* Semantic segmentation

*Instead of classifying an image, we can classify each pixel




Semantic Segmentation

 Semantic segmentation SOTA: Segment Anything
*Trained on 1B+ MASKS

m segment-anything.com
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Semantic Segmentation

 Semantic segmentation SOTA: Segment Anything
*Can easily transfer labels to never before seen data

m segment-anything.com
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Depth Estimation

 What about regression?

* Depth estimation: regressing the depth of every pixel




Object Detection

* Instead of segmenting per pixel classes we can estimate
bounding boxes of objects

bouquet of bottle of water glass of water with
red flowers ice and lemon

dining table
with breakfast
items

plate of fruit

banana
slices

fork 63

a person
sitting at a

table [Karpathy, Li “14]




Optical Flow

* We can also go beyond individual objects
* Using optical flow networks we can track objects across frames

64



Tracking

 SOTA methods use different representations for tracking

* OmniMotion represents a video in a 3D canonical volume to track
objects

65

https://omnimotion.github.io



Tracking

 SOTA methods use different representations for tracking

* OmniMotion represents a video in a 3D canonical volume to track
objects

e This way it can even track through occlusions

66

https://omnimotion.github.io



Generative Adversarial Networks

* Previous models were discriminative
* We can also generate data
* Objective functions can get very creative!
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Generative Adversarial Networks

* Previous models were discriminative
* We can also generate data
* Objective functions can get very creative!

minmax V/(D, ) = Eq y[log D(z, y)] + B, - [log(1 — D(G(z, 2)))]

https://arxiv.org/pdf/
ETH 1611.07004.pdf
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Stable Diffusion

We can even fuse CNNs with other modalities

“house”

m https://medium.com/@amritangshu.mukherjee/making-text-to-image-

models-smarter-with-controlnet-5f67979ea9a
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Where are we now?

Vision transformers have a global receptive field

Ball [

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

* Extra learnable
[class] embedding

|
o TTIT T

Lmear PrOJectlon of Flattened Patches

| ||||%|
1L

ﬁ%:—» I 7 A

s e

Transformer Encoder

Embedded
Patches

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words:

Transformers for image recognition at scale."
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Transformers

* Flexible architectures makes fusing modalities easy
* For example, we can use text input to help classify a video

LEgoNCE

B

|—> EgoNCE Head }1—‘

g N\ \
M ¢ M)
Fused [ FFN T [ FFN ] Fused
Layers N ‘ Layers
[(%S—Att [(%S-Att
! [
SpaclTime ’>< T 5
6‘?1-‘ e ]’ I Self-Att ]—>€A
A A
— J|| "\ =
((Ny-M) N (NL-M) )
Unfused FFN [ FFN ]Unfused
Layers 4 A Layers
Space-Time
L Self-Att l [ Self-Att )
. /N 4

|

#C C stands near a
wheelbarrow and
scrolls the phone.

m Pramanick, Shraman, et al. "Egovlpv2: Egocentric video-language pre-training
with fusionin the backbone.” 2023




Summary

* Deep learning minimizes an objective function

with data samples (x, y):
argmin L(y, f(x, 0))
0

* Non-linearity are important for ¢

* Gradient descent to optimize obj

eep networks
ective

* Convolutionsexploit translation invariance to

sparsify model

* Used in many computer vision tasks

ETH
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