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Convolutional Neural Network

• Motivation for deep learning

• Linear classifier

• Activation functions

• Optimization

• Back propagation

• Motivation for CNN

• Convolution layer
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Motivation

• Recall: handcrafted convolutional kernels

• What if we want to find more complex relation? Eg. Classify 
the image as a cat?
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Deep Learning

• What we will see

CNN

argmin
𝜃

ℒ 𝒚, 𝑓 𝒙, 𝜃

𝑓 𝒙, 𝜃



Data-Driven Approach

• Goal: summarize the input – output 
relationship directly from a collection of data

• Overview

argmin
𝜃

ℒ 𝒚, 𝑓 𝒙, 𝜃

– 𝒙 input

– 𝜃 kernel weights

– 𝑓 𝑥, 𝜃 prediction

– 𝒚 learning target

– ℒ loss function
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A Simplified Problem

• Task: separate black dots from 
white ones

• Linear classifier:
𝑓 𝑥, 𝜃 = 𝑊𝑥 + b

Called fully connected layer: 
weights interact with all
dimension of data 
simultaneously

• Model parameters 𝜃 = {W,b} Credit: Wikipedia
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Loss Function

• Three classifier 
𝐻1, 𝐻2 , 𝐻3 , how to 
compare ?

– Loss function!

• A loss function 
quantifies the quality 
of a classifier

Credit: Wikipedia
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Softmax (Logistic) Classifier

• scores = unnormalized log probabilities of different classes ➔
maximize the probability

𝑃 𝑌 = 𝑘 𝑋 = 𝒙𝒊) =
𝑒𝒔𝑖,𝑘

σ𝑗 𝑒
𝒔𝑖,𝑗

= 𝑃𝑖,𝑘 , 𝒔𝒊 = 𝑓(𝒙𝒊 , 𝜃)

• (Softmax) Loss ℒ 𝒚, 𝑓 𝒙, 𝜃 = −σ𝑖=1
𝑁 log

𝑒
𝒔𝑖,𝑦𝑖

σ𝑗 𝑒
𝒔𝑖,𝑗

, 𝑦𝑖 ∈ ℕ

• Minimize the negative log likelihood of the correct class

• If only two class 𝑦𝑖 ∈ {0,1} and one score: logistic loss

ℒ 𝑦, 𝑓 𝑥, 𝜃 =
1

𝑁

𝑖=1

𝑁

𝑦𝑖 log
𝑒𝑠

1 + 𝑒𝑠
+ (1 − 𝑦𝑖) log

1

1 + 𝑒𝑠
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Limitations for Linear Classifier

• Not all classes are linear separable

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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First Trial

• Address the limitation by stacking more layers
𝑓 𝒙, 𝜽 = 𝑊2 𝑊1𝒙 + 𝑏1 + 𝑏2

= 𝑊2𝑊1𝒙+ (𝑊2𝑏1 + 𝑏2)

• Collapse to the single layer case, not working

• Non-linearity is necessary:
𝑓 𝒙, 𝜽 = 𝑊2𝜙 𝑊1𝒙 + 𝑏1 + 𝑏2

𝜙(𝑥) → non-linear, scalar “activation” function

• Q: What is a good activation function?
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Activation Functions

• Introduce non-linearity by activation functions
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Activation Functions
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Activation Functions
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Activation Functions
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Ans: Dead ReLU will never activate ➔ usually initialize with slightly positive biases

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Activation Functions
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Multilayer Perceptron (MLP)

• Stack several linear 
classifiers

– One or more more 
“hidden” layers

• Add activation function 
between layers 

• Can distinguish data that is 
not linearly separable

• “Universal approximator”

Credit: Wikipedia
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Optimization

• Find the best weights (𝜃) that minimize the 
loss function

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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Optimization
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15.5% accuracy vs SOTA >95%

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Optimization

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

21



Optimization
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Gradient Descent

𝜃𝑡+1 = 𝜃𝑡 + 𝜆∇ℒ𝜃
• ∇ℒ𝜃 gradient of ℒ(𝑦, 𝑓 𝑥, 𝜃𝑡 ) with respect to 𝜃.

• 𝜆 step size, control how far each step goes → “learning rate”

Credit: Alexander Amini et al.
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Gradient Descent

24
Credit: Wikipedia



Stochastic Gradient Descent (SGD)

∇𝜃ℒ 𝑦, 𝑓 𝑥, 𝜃 =
1

𝑁


𝑖=1

𝑁

∇𝜃ℒ 𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃

• When 𝑁 is large, estimating the full gradient is 
expensive

• Approximate sum using a minibatch of examples

∇𝜃ℒ 𝑦, 𝑓 𝑥, 𝜃 ≈
1

𝐵


𝑖=1

𝐵

∇𝜃ℒ 𝑦𝑖, 𝑓 𝑥𝑖, 𝜃 , 𝐵 < 𝑁

– B = 32 / 64 / 128 common

• Make a step per minibatch → repeat with next batch
25



Back Propagation

• For linear classifier 𝑓 𝑥, 𝜃 = 𝑊𝑥 + 𝑏:

∇𝜃ℒ 𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃 ==
𝜕ℒ

𝜕𝑓
𝑥𝑖

• For MLP, use chain rule

∇𝜃ℒ 𝑦𝑖 , 𝑓 𝑥𝑖 , 𝜃 =
𝜕ℒ

𝜕𝜃
=
𝜕ℒ

𝜕𝑓
⋅
𝜕𝑓

𝜕𝜃

• Back propagation: recursive application of the 
chain rule to compute the gradients
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Back Propagation
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Back Propagation
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Credit

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Scaling Up

• So far (fully connected layer)
𝑓 𝑥, 𝜃 = 𝑔𝑛 𝑊𝑛 ⋯𝑔1 𝑊1𝑥 + 𝑏1 +⋯𝑏2

• Dimension of weights
– 𝑊1 ∈ ℝ𝐷×𝑘 where 𝐷 is the dimension of input data 𝑘 the 

dimension intermediate layers

– 𝐷 = 2 for the point separation

– 𝐷 = ? for image separation 
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Scaling Up

• So far (fully connected layer)
𝑓 𝑥, 𝜃 = 𝑔𝑛 𝑊𝑛 ⋯𝑔1 𝑊1𝑥 + 𝑏1 +⋯𝑏2

• Dimension of weights
– 𝑊1 ∈ ℝ𝐷×𝑘 where 𝐷 is the dimension of input data 𝑘 the 

dimension intermediate layers

– 𝐷 = 2 for the point separation

– 𝐷 = 3× 106 for image (1000 × 1000px) separation

– Expensive! 
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Motivation for Convolution Layer

• Sparse interactions 

– Also called sparse 
connectivity or 
sparse weights

– Making the kernel 
smaller than input
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Credit: Goodfellow et al, Deep Learning (2017)



Motivation for Convolution Layer

• Parameter sharing

32

Credit: Goodfellow et al, Deep Learning (2017)



Motivation for Convolution Layer

• Equivariant representations
– Change the position of an object should not change the 

classification of it

33Credit: Sofa, Cat

https://unsplash.com/photos/green-fabric-sofa-fZuleEfeA1Q
https://www.freeiconspng.com/img/40363


Motivation for Convolution Layer

• Hierarchical perception
– From low-level features to high-level concepts

– Motivated by perception systems

37Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Convolution Layer

• Preservation of spatial structure
– Fully connected layer stretched an image into 1D vector
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Fully 
connected 
layer

Convolution 
layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Convolution Layer
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Q: How many parameters has a convolutional filter if the input image has 

N channels and the output feature map has D channels?



Convolution Layer
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Convolve over all 
spatial locations

Credit

https://cs231n.github.io/convolutional-networks/


Convolution Layer

• Kernel size: dimension of the weights

• Stride: the step size of applying kernel 

• Applying 3 × 3 kernel on 7 × 7 grid with stride 1

42

➔



Convolution Layer

• Kernel size: dimension of the weights

• Stride: the step size of applying kernel 

• Applying 3 × 3 kernel on 7 × 7 grid with stride 2
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➔



Output Dimension
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Zero Padding
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Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Classification VS Regression

• Classification

– 𝑓 𝑥1 , 𝜃 as the score

– take the class with larger score

– ℒ 𝒚, 𝑓 𝒙,𝜽 = −σ𝑖=1
𝑁 log

𝑒
𝒔𝑖,𝑦𝑖

σ𝑗 𝑒
𝒔𝑖,𝑗

, 𝑦𝑖 ∈ ℕ, 𝑠𝑖 = 𝑓(𝑥𝑖, 𝜃)

• Regression

– 𝑓 𝑥1 , 𝜃 as the value 

– can be used for classification by comparing value

– ℒ 𝒚, 𝑓 𝒙,𝜽 = σ𝑖=1
𝑁 | 𝑦𝑖 − 𝑠𝑖 |

2 , 𝑦𝑖 ∈ ℝ𝑛 , 𝑠𝑖 = 𝑓(𝑥𝑖, 𝜃)
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Image Classification

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks ‘12
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CNN Success Stories

• Early options: Ensemble, boosting, SVM, decision trees, MLP, …

• 2012: AlexNet revolutionizes the field of Computer Vision

• CNN reduces classification error on ImageNet: 26% -> 16.4% error

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks ‘12
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CNN Success Stories

• CNN architectures keep getting refined

• 2014: VGG sets another key benchmark achieving 7.4% error on 
ImageNet (second best: 14.8% error)

• Key architecture improvements:

•Reduced kernel size

•Increased depth

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-

scale image recognition.” 2014

} same receptive field with more 
non-linearities 
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CNN Success Stories

• CNN architectures keep getting refined

• 2014: VGG sets another key benchmark achieving 7.4% error on 
ImageNet (second best: 14.8% error)

• Key architecture improvements:

•Reduced kernel size

•Increased depth

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-

scale image recognition.” 2014

} same receptive field with more 
non-linearities 
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CNN Building Blocks

• We have talked about convolutional layers, fully connected 
layers and activation functions (ReLU)

• What about max pooling? 

•Dimensionality reduction

•Introduces translation invariance (could remove)

•Helps to extract dominant features  
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CNN Building Blocks

• Max Pooling

cs231n.github.io/convolutional-networks
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CNN Success Stories

• Very deep networks need new building blocks to achieve 
their full potential 

• 2015: ResNet achieves 3.57% error on imagenet and is the 
foundational architecture many subsequent innovations

• Key architecture improvement: residual block

•Add skip connections -> more stable gradients

•Intuition: option to rely less on depth



Understanding CNNs

54

Activation Input image patch Zeiler et al, 2014



Understanding CNNs
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Activation Input image patch Zeiler et al, 2014

Layer 5
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Beyond Classification 

• Classification networks are powerful backbones for other tasks

Ghosh, Tarun Kanti, et al. "Multi-class probabilistic atlas-based whole heart 

segmentation method in cardiac CT and MRI.” 2021

VGG
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Beyond Classification 

• Semantic segmentation

•Instead of classifying an image, we can classify each pixel

CNN

ℒ = −
𝑖


𝑐

𝑦𝑖𝑐 log(𝑝𝑖𝑐)
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Semantic Segmentation

• Semantic segmentation SOTA: Segment Anything

•Trained on 1B+ MASKS

segment-anything.com
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Semantic Segmentation

• Semantic segmentation SOTA: Segment Anything

•Can easily transfer labels to never before seen data

segment-anything.com
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Depth Estimation

• What about regression?

• Depth estimation: regressing the depth of every pixel

CNN
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• Instead of segmenting per pixel classes we can estimate 
bounding boxes of objects 

[Karpathy, Li ‘14]

Object Detection



Optical Flow

• We can also go beyond individual objects

• Using optical flow networks we can track objects across frames

o

o

Magic
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Tracking

• SOTA methods use different representations for tracking

• OmniMotion represents a video in a 3D canonical volume to track 
objects 

65

https://omnimotion.github.io



Tracking

• SOTA methods use different representations for tracking

• OmniMotion represents a video in a 3D canonical volume to track 
objects 

• This way it can even track through occlusions

66

https://omnimotion.github.io



• Previous models were discriminative

• We can also generate data

• Objective functions can get very creative!

CNN

67

Generative Adversarial Networks



Generative Adversarial Networks

• Previous models were discriminative

• We can also generate data

• Objective functions can get very creative!

68
https://arxiv.org/pdf/

1611.07004.pdf



Stable Diffusion

• We can even fuse CNNs with other modalities 

69https://medium.com/@amritangshu.mukherjee/making-text-to-image-

models-smarter-with-controlnet-5f67979ea9a



Where are we now?

• Vision transformers have a global receptive field

70
Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: 

Transformers for image recognition at scale."



Transformers

• Flexible architectures makes fusing modalities easy

• For example, we can use text input to help classify a video

72Pramanick, Shraman, et al. "Egovlpv2: Egocentric video-language pre-training 
with fusion in the backbone.” 2023



Summary

• Deep learning minimizes an objective function 
with data samples (x, y):

argmin
𝜃

ℒ 𝒚, 𝑓 𝒙, 𝜃

• Non-linearity are important for deep networks

• Gradient descent to optimize objective

• Convolutions exploit translation invariance to 
sparsify model

• Used in many computer vision tasks

73
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