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Last lecture: Optical Flow

* Brightness constancy equation

Lu+l v+l =0

* Aperture problem

I:U’Uu—I—Iy’U—FIt: 0
(1 constraint)
%, v (2 unknowns) isophote I(t)=I

e Solution:
— regularize (trade-off brightness constancy and smoothness)

— e.g. Kanade-Lukas-Tomasi E(h) = Y [I(x+h)- [O(X)]z
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isophote I(t+1)=I




MPEG-4 part 10 aka H.264
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Milestones in Video Coding

Variable block size Variable block size Frame
PSNR 1 (16x16-4x4)+ (16x16 — 8x8) Halt-pel Difference coding
[dB] quarter-pel + (H.263, 1996) + motion compensation (H.120 1988)
multi-frame quarter-pel (MPEG-1 1993 ‘
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Thomas Wiegand: Digital Image Communication
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Hybrid Video Coding 27



Milestones in Video Coding

Variable block size Variable block size Frame
PSNR (16x16 — 4x4) + (16x16 — 8x8) Half-pel Difference coding
[dB] quarter-pel + (H.263, 1996) + motion compensation  (H 120 1988)
multi-frame quarter-pel (MPEG-1 1993 ,
40 I motion compensation  motion compensation/ MPEG-2 1994) v

MPEG-4, 1998

(H.26L, 2001) ( )
g
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Medical Imaging

2 forms - radiation source:
— outside the body: X-ray, ultrasound
— inside the body: magnetic resonance imaging (MRI),
positron emission tomography (PET), single photon
emission computed tomography (SPECT)




Medical Imaging

2 forms - radiation source:
— outside the body: X-ray, ultrasound
— inside the body: magnetic resonance imaging (MRI),
positron emission tomography (PET), single photon
emission computed tomography (SPECT)

e Computed Tomography (CT)
— 1917 - mathematical basis - Johann Radon

— 1960s - Cormack & Hounsfield - 1st
scanning device
-> Nobel prize

ETH




Motivation

Computed
Tomography

m [tomography <- Greek work tomos meaning "cut" or "slice"]




CT: data collection

CT basic principle:
Quantification of the tendency of objects to absorb

x-ray tube translation or scatter x - rays given by the optical density of the
material measured in terms of attenunation
collimator coefficient

detector und
electronics

collimator intensity profile

attenuation profile

Computed Tomosraphy, Kalender, Verlag, 2000.



CT: Imaging setup

X-ray Tube
-
X-ray Beam s iadaly Image Intensifier
Computer
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Unit
Analog Video
Signal

Serial Link

PC with Image
Capturing Hardware




Acquisition geometry

\\_\ H// I’/. - \&I
e Py
:% I | \ - -~ - - A . - . _.-'I
> \ [ \‘F o . -"ﬁ‘.
\ S ?' ¥,
\ \ Y " v ._ b
- * y e — . = /
{........
400- 1000
elements
(a) Parallel-beam CT (b) Fan-beam CT (c) Cone-beam CT

Figure 1.1 Scanning geometries. In (a) a pencil X-ray source and a single detector are translated

simultaneously and then rotated to take measrements through 180°. In (b) a fan of X-rays is

detected by a 1D array of detectors. The apparatus rotates in a circle. In (¢) a cone of X-rays is

detected by a 2D array of detectors. The circular movement is supplemented by the translation in
the axial direction.

m (d) Helical (spiral) CT - cone beam geometry moving around the object in a spiral manner
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Image reconstruction: basic concept

1J_ A+B=7

- Al B T A+C=6
- -—-T A+D=5 S

i el il s) =
B+C=9 4| 3
‘ B+D=28 _

9 5 C+D=7

6 8

problem method solution

FIGURE 13-27. The mathematical problem posed by computed tomographic (CT)
reconstruction is to calculate image data (the pixel values—A, B, C, and D) from the
projection values (arrows). For the simple image of four pixels shown here, algebra
can be used 10 solve for the pixel values. With the six equations shown, using sub-
stitution of eguations, the solution can be determined as illustrated. For the larger
images of clinical CT, algebraic solutions become unfeasible, and filtered backpro-
jection methods are used.

m The Fssential Phvsics of Medical Imaging. Bushberg




Image acquisition: basic model

X-Ray
source

Detector

-

R

The intensity of the X-ray where it hits the detector depends on the width of object and the length of the path travelled both through

the object and the air.

Budd, 2008



Image acquisition: basic maths

X-ray - moves along straight line
 atdistances - intensity /(s)
e X-ray travels Js - intensity reduced by JI
— reduction depends on intensity and optical density u(s) of the material
— for small ds:

A/ I(s) =-u(s) &5

Combiningall of the contributionsto the reduction in the intensity of an X-ray
travellingalongline L given by all of the parts of the body that it travels through -
attenuation (reduction in intensity) given by:

—R
J'..fJI.-Jh.FJ — I.H?r.rr'i{' .

where

R /u(.ﬂr!.«;, «—— line integral

Rf(L) = / f(x) |dx| Radon transform of function f (x,y)
L




The Radon Transform

D S Faaces

Ober die Bestimmung von Funktionen dureh ihre
Integralwerte lnge gewisser Mannigfaltigkeiten.

Voa

Jomas Fapos.

Integriert mman sine geeignetes Regularititsbedingungen nates.
worfens Punktion zweier Verladerlichan 1, v — size Punkfwnbfion
jl"(P]I in der Ebene — lings einer belishigen Geraden g, so erbilt

in dem [ntegralwerten Fg) sine Geradenfunktion Das in Ab-
:.:‘nmu. A vorliegesder Abbasdlung geldste Problem ist dis Um-
kehrung disser linearen Fanktionaltransformation, d. h. & werden
folgends Fragen beastwostsl: kaon pede, gesigoneten Reguluritits.
bedisgunges gendigende Gerndenfunktion suf diese Wiise ¢otitazdon
gedacht werden? Ween ja, ist dasa [ derch F eindeutiz bestimmt
und wis kaso s ermitislt werden?

Ber. Sachs. Akad. Wiss. Leipzig, Math. Phys. Kl. 69, 262 (1917)
English translation in: Deans, S.R. (1983) The Radon transform

and its applications. John Wiley & Sons, NY)




Radon transform

Source

oy

Detector

e 0

Object

p . Distance from the object centre
8 Angle of the X-Ray

This X-Ray will pass through a series of points (., i) at which the optical density is u(.r. y). Using the equation for a straight line
these points are given by

(z.y) = (p cos(0) — s sin(@). p sin(@) + s cos(0)).

where s is the distance along the X-ray. In this case we now have
I}-u.,). ) g Il(,._n).

where

R(p. 0) /u(p cos(0) — s sinf@), p sinff) + s cos(@))ds.



Radon transform

Source

oy

e 0

Object

p . Distance from the object centre
8 Angle of the X-Ray

Detector

This X-Ray will pass through a series of points (., i) at which the optical density is u(.r. y). Using the equation for a straight line

these points are given by
(z.y) = (p cos(0) — s sin(@). p sin(@) + s cos(0)).

where s is the distance along the X-ray. In this case we now have

0
I}-unh l‘hul( "(’.‘)-

where

s = arc length

R(p. 0) /u(p cos(0) — s sinf@), p sinff) + s cos(@))ds.

o - =)
= f [ ule,y) dlp — xcos — ysinf) de dy

Radon transform of function u(x,y)

6(x,y) = Dirac Delta function




The Radon Transform

We will use the coordinate system defined in Fig. 3.1 to describe line
integrals and projections. In this example the object is represented by a two-
dimensional function f(x, y) and each line integral by the (6, f) parameters.

The equation of line AB in Fig. 3.1 is

xcos f+ysin 0=t (1)

and we will use this relationship to define line integral Py(7) as

Pg[f] = j f(x, ¥) ds. {2} fx,v)

{8,r) Lines

Using a delta function, this can be rewritten as

z~3

Lol

Po(t) = r_ j"_ £(%, ¥)8(x cos 0+ sin 0— 1) dx dy. A)

The function Py (¢) is known as the Radon transform of the function f(x, y).

Fig. 3.1: An object, f(x, y),
and its projection, Py(t,), are

IS | ? shown for an angle of 8. {From -
Basis Images” i)

Chapter 3. Principles of Computerized Tomographic Imaging, Kak and Slaney,

IEEE Press




Radon transform: properties

Let Rg = 4! (p. 0) / / (x,4)0(p — xcosf —ysind) dr dy

1. Linearity:

g(z.y) = Doy g4(z.y) = §(p.0) = > _ay gy(p.0)

q q

1. Shifting:
Assume that a lunction g(x,y) is shifted
g(z — 0.y —y0) =

hiz,y) = glz
/ gle — xp,y — yo) O(p —xcosf —ysinf) dr dy

hip.0) =

]

'--.._____=-..___,

o 1o
[ glxz,y) o((p — xwpcos® — yysinf) — xcosh — ysin@) dz dy
o0 . >0

= glp — xpycosl — ygsind, b)

Note that only the p-coordinate is changed.




Radon transform: properties

3. Rotation:
Here g(x,y) is expressed in polar form, i.e., glz,y) = g(r, ¢). In this case rotation is fairly easy
hir,¢) = glr. Q‘ﬁn}
. o
hip,0) =

[
b

— ) 6(p —reosgeosf — rsingsind) v de dr

8 %

'““"""-35"“"-&1‘

g @) ) d(p — 7 cos(f — é — o)) r| dd dr

a0

= G(p.0 — )

This is quite obvious. If the coordinate system (z,y) is turned ¢g, then the Radon transtorm is
also turned gy.

4. Convolution
Assume the function h(x,y) being a 2D convolution of f(z.y) and gz, y).

hixz.y) = flx,y) * +g(x,y) //f x1.y1) gl — .y — ) day dy

Radon transform of a 2D

h(p. ) / flp1,8) glp— p1.0) dp convolution is a 1D
convolution of the Radon

— H " 4 transformed functions with
m f P ] ij(,ﬂ ] respect to p



Radon Transform: Point source

Here an arbitrary position of the point source (z*,y") is assumed.

gla,y) = 0lx —2") dly —y") =
g(p.0) = [ [ ") My —y') dlp — weos — ysinf) dx dy
.l

= d(p —x" cosf —y" sinf)

Fig. 2.2 illustrates a point source and the corresponding Radon transform.

p* @

Y

Figure 2.2 To the left is shown a point source, and to the right is shown the corresponding normal
Radon transform.

ETH




Radon Transform: Sinogram

Foinl image

Normalized distance
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Normalized distance

Sinogram for point offset in X dircetion
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Center for Fast Ultrasound Imaging, Department of Electrical Emglnearing
Technical University of Denmark




Radon Transform: Sinogram

Point image

Normalized distance
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Center for Fast Ultrasound Imaging, Department of Electrical Engineering
Technical University of Denmark




Radon Transform: Sinogram

70
100 60
50 50

=100

0 50 100 150
¢

J Rf

Figure 1.3 Radon transform (sinogram) of a two-dimensional function f. (Left) Note that the
origin is located at the centre of the image. (Right) High-intensity points correspond to diagonals

ETH

of the square.




Radon Transform: Sinogram

Object Radon transform
-180° = Sinogram




Radon Transform: Sinogram

Radon transform
-180° = Sinogram




Radon Transform: Sinogram

20 40 B0 B0 100 120 140 160 180
o (degrees )




Question:

Can we find the function u(x,y) if we
know the function R(p,8)?



The Radon Transform

Ober die Bestimmung von Funktionen dureh ihre
Integralwerte lnge gewisser Mannigfaltigkeiten.

Voa

Jomas Fapos.

Ietegrisrt mun tine geignetes Regularititsbedingungen nnter.
worfens Punktion zweier Verladerlichan 1, v — size Punkfwnbfion
jl"(P]I in der Ebene — lings einer belishigen Geraden g, so erbilt

in dem [ntegralwerten Fg) sine Geradenfunktion Das in Ab-
:.:‘nmu. A vorlisgesder Abbandlang geldste Problem ist dis Tm-
kehrung disser linearen Fanktionaltransformation, d. h. & werden
folgende Fragen bessiwortsl: kann jeds, gesigneisn Hegularitits.
bedisgunges geofigende Gerndenfunktion suf diess Waise eotstasdon
gedacht werden? Ween ja, ist dasa [ derch F eindeutiz bestimmt

%/ %ﬁa«.@- und wis kasn & ermilielt werden?

Ber. Sachs. Akad. Wiss. Leipzig, Math. Phys. Kl. 69, 262 (1917)
English translation in: Deans, S.R. (1983) The Radon transform

and its applications. John Wiley & Sons, NY)



Image reconstruction: Algebraic
formulation

I I A+B=T ' = .
I e ! - 1100 v
A+Dm5 5 I =
- e 1010 |[ A 6
B+D=8
9 l' ‘l 3 C+D=7 1001 B _ 5
-] 8
0110 C 0
protlem rrvthesd aolaticn (} 1 0 1 D g
FIGURE 13-27. The mathematical penhlem posed by cosmpated tarmeagiaphic [CT) - o
FEORSErUCTon i to cloulste image data (the pixd values==2, 8, C, and O) from the {:} D 1 1 -
projection values favrows] For e simple irmbge of four picel thown here, algebea | !
can be wsed to solve tor the piel values. With the six squations shown, using sub- M _.-f"I
stivtion of equations, the tolution can be determined as illustrated. For the langer b #
Images of clircal CT, algebrats solutions become unfesitse, and nered Batkixe o
jetian methods. are used. tomography matrix
K= {kij}

Tomography system through the lense of linear algebra:
® Assumption - attenuation of material within each pixel constant and proportional to the area of the pixel

illuminated by the beam

k area of pixel j illuminated by ray ¢
ij =

total area of pixel

i=1,....Lj=1,....nm.
Hence, the algebraic model reads

Kf=g.

f = BW plane/volumetric image to be retrieved (reshaped into a vector)
m g = attenuation measurements from the CT system The Essential Physics of Medical Imaging. Bushberg




Image reconstruction: Algebraic
formulation

Overdetermined non-square matrix K

Kf=g.
Transform into a system of normal equations
K'Kf=KTg

lll-posed problem:
Hadamard - solution does not exist, is not unique or not continuously dependent on data

Methods:
Large systems need to be solved iteratively:
* Algebraic Reconstruction technique (ART), SimultaneousIterative Reconstruction

Techniques (SIRT), SimultaneousAlgebraic Reconstruction Technique(SART)
* direct methods - Tikhonovregularisation, SVD etc.

m The Fssential Phvsics of Medical Imaging. Bushberg




Image reconstruction:

Backprojection
Single linear projection
Detector
Source :
—
inverse = 1 back projection
Detector

Source

q




Image reconstruction:
Backprojection

Two linear projections

Smu‘cel Detector 1

H

Detector 2 Detect

+ Detector 1

Source :
—b




Image reconstruction:

Backprojection
Multiple linear projections
3 projections 4 projections many projections
Original

object




Backprojection of point




Fourier / Central Slice Theorem

 Facilitatesinversion of Radon transform

G(g,0) = F(gcos 0,gsino)

G = 1D Fourier transform

of the attenuation

measurements g = Rf

[keep 6 fixed] F = 2D Fourier transform
of the object slice f(x,y)
evaluated at a particular
point




The Fourier Slice Theorem

We start by defining the two-dimensional Fourier transform of the object
function as

Fa,v=| | fx yye-reweo dx ay. 7)

Likewise define a projection at an angle 6, Py(f), and its Fourier transform by

Sy(w) = S: Py(t)e~7 gt ®)

The simplest example of the Fourier Slice Theorem is given for a
projection at @ = 0. First, consider the Fourier transform of the object along
the line in the frequency domain given by v = 0. The Fourier transform
integral now simplifies to

Fa,0=|" | fex, yye-st= dx dy ©)

but because the phase factor is no longer dependent on y we can split the
integral into two parts,

F(u, 0)= S“m [5: fx, ) dy] e=mux gy (10)

ETH

From the definition of a parallel projection, the reader will recognize the term
in brackets as the equation for a projection along lines of constant x or
P =\ 06 y) . an

Substituting this in (10) we find

F(u, 0)= r Py o(x)e-177 d. (12)

The right-hand side of this equation represents the one-dimensional Fourier
transform of the projection Py_p; thus we have the following relationship
between the vertical projection and the 2-D transform of the object function:

F(u, 0)=Sp-o(u). (13)
This is the simplest form of the Fourier Slice Theorem.

L Qi

C'hai:nter 3. Principles of Corﬁpmeﬂzed Tomographic Imﬂéing. Kak and Slanev,
IEEE Press




Fourier Slice Theorem

Fig. 3.6: The Fourier Slice
Thearem relates the Fourier
transform of a projection to the
Fourier transform of the object
alang a radial line. (From
[Pan83].)

s

£
- -
&

The Fourier transform of a parallel projection of an image f(x, ¥)
taken at angle 8 gives a slice of the two-dimensional transform,
F(u, v), subtending an angle 6 with the u-axis. In other words,

the Fourier transform of Py(r) gives the values of F(u, v) along
line BB in Fig. 3.6. /@

'I.
'1‘

v g

Fourier tranaform

- o

frequency domain

space domain

Chapter 3. Principles of Computerized Tomographic Imaging, Kak and Slaney,
IEEE Press



Fourier slice theorem: What does the DFT image represent?

Projection DF_T Ot.

profile projection
| profile

\

\n

) 1D, ~

) DFT )

Creates line
Central slice of
Entire DFT 1mage

Integrate intensities
along x-direction

El

Chapter 12, Intermediate Physics for Medicine and Biology. 3™ Ed.. Hobbie.



Fourier slice theorem: what does the DFT image
represent?

Tl e Projection
profiles

\

% i3 . .
/.f & s Create lines 1n
) DETS central slice ot

entire DFT image

The more angles

used. the better
along x-direction the Fourier space

Integrate intensities

mmaee 1s filled

Chapter 12, Intermediate Physics for Medicine and Biology, 3* Ed.. Hobbie,




Fourier slice theorem: What does the DFT image represent?

DFT image represents integration of
original projections DFT transformed and
summed together.

1-D .
DFTs

at each
projection

This 1s the fast way to create the DFT
image from projection data. The more
projections taken, the more complete the
sampling.

Chapter 12, Intermediate Physics for Medicine and Biology, 3" Ed., Hobbie.



Fourier slice theorem

v
Fig. 3.7: Collecting prajections
of the object at a number of
angles gives estimates of the
Fourier transform af the abject - —
along radial lines. Since an FFT o .
algorithm is used for , d P P N
transforming the data, the dots S, _ N
represent the actual location of . L \
estimates of the object’s Fourier fop ] o '1'
transform. (From [Pan83].) N R Aty o
¥,
Py b ﬂh\ i .fl i f
|"II Il 1 i ) .|| ;
L]
R A SR R
H\. S, - e & A
*-». _— - -
Rl - -
frequency domaln

C'hai:nter 3. Principles of Corﬁpmeﬂzed Tomographic Imﬂéing. Kak and Slanev,
IEEE Press



Tomographic reconstruction:
concept

Fig. 3.8: This figure shows the
frequency domain data available
Jrom one projection. {a) is the
ideal situation. A reconstruction
could be formed by simply
sumring the reconstruction from
each angle until the entire
Sfrequency domain is filled. What
ie actually measured is shown in
{b). As predicted by the Fourier
Slice Theorem, a projection gives
information about the Fourier
transform af the object along a
single line. The filtered
backprojection algorithm takes
the data in (b) and applies a
weighting in the frequency e ———— e —— -
domain so that the data in (c) are fl f \-

an approximation v those in (a).

frequency domain

s

(2) (b) <)




Filtered backprojection algorithm

Sum for each of the K angles, 6, between 0 and 180°
Measure the projection, Ps(t)
Fourier transform it to find S,;(w)
Multiply it by the weighting function 27 |w|/K
Sum over the image plane the inverse Fourier transforms of the
filtered projections (the backprojection process).

20
40
&0
an
100
120
140
160
180

frequency domain




Fourier Slice Theorem:
Backprojection

Perform for all projections - over all In practice - issues:
projection angles 6:
® requires many precise attenuation

® Measure projection measurements
(attenuation)data ® sensitive to noise

e 1D FT of projection data e unstable & hard to implement

® Make 2D inverse FT and sum accurately
with previousimage(i.e. e blurringin the finalimage
backpropagate)

Input: sinogram Output: reconstructed image

Step 1:
Fourier transform
each row

Step 3:
2-dimensinal
Fourier transform

\ )
Step 2:

Rearrange fows

as diameters

of a circle




Fourier Slice Theorem:
Filtered Backprojection

Perform for all projections - over all projection
angles 6:

Measure projection (attenuation)data

1D FT of projection data

Apply high-pass filter in Fourier domain
Make 2D inverse FT and sum with previous
image (i.e. backproject)

M, projections

&
f‘ 1‘\__\_ T valus

profie |

* — *
Center for Fast Ultrasound Imaging, Department of Electrical Engineering
Technical University of Denmark



Tomographic reconstruction

backprojection filtered backprojection

- -
NL' MP MP
-39
B - BE
HE - BE
— e G - B
!
20 0 o0 $0 100 12 (a) (h) ()

Figure 11.15. The image rec onstructed from the sinogram of figure 11.12(b). (a) The image reconstr ucted
from the profiles collected every 30°; (b) using profiles spaced at 10°; (¢) profiles spaced at 2°. The

importance of taking enough profiles is apparent from these figures.

Medical Physics and Biomedical Engineering, Brown et al., IoP Publishing



Tomographic reconstruction

Backpropagation results:

Filtering can be implemented as a
physical filter on the CT scanner itself -

low energy X-rays removed:

(@) 512 projections

|
.' \
I \
| |
| . | . , (c) 64 projectons
) t:a i
original attenuation filtered attenuation
profile profile

ETH




Tomographic reconstruction

A AN

A RN
simple backprojection filtered backprojection

PR

The Essential Physics of Medical Imaging. Bushberg




Tomographic reconstruction

B 8 o 8 8
-MULOC‘NOW_

theta = 0:40:170 theta =0:20:170 theta = 0:10:170 theta=0:1:170

ETH




CT scanner

Medical applications




Tomography in material sciences

de0degree X-ray tomaegraphy
Milan Felberbaum
STI-IMX-LSMX

Cylinder of an Al-Cu Alloy




Tomography in everyday life

e Airport security — 3D Computed Tomography







Tomography in biology

.'N‘
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