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 Augmented path method 

 Push-relabel method 



Foreground / Background Estimation 

Rother et al. SIGGRAPH04 



Data term Smoothness term 
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Solvability using GraphCut 

all terms submodular 

Submodularity 

submodularity = necessary condition 
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Solvability using GraphCut 

Submodularity 

General pairwise potential 

where 

could be arbitrary 

Submodularity = sufficient condition 



General GraphCut pipeline 

Energy minimization transformed into GraphCut : 
 

Å Each state of original variables encoded using binary variables 
Å Designed such that the energy under this encoding is pairwise submodular 
Å The solution obtained by solving st-mincut and inverting the encoding 

Obtain 
solution 

Graph Cut 
Transform into 
submodular E 
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energy solution 

Invert 
Encoding 



Mulit -label energy with linear 
pairwise potentials 
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Higher order minimization with GraphCut 

Higher order term Pairwise term 
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Higher order minimization with GraphCut 

Higher order term Pairwise term 

Example : 

Kolmogorov ECCV06, Ramalingam et al. DAM12 



General GraphCut pipeline 

What if no encoding leads to pairwise submodular problem ?  

Obtain 
solution 

Graph Cut 
Transform into 
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Move making algorithms 

ÅOriginal problem decomposed into a series of subproblems 

solvable with graph cut 

ÅIn each subproblem we find the optimal move from the 

current solution in a restricted search space  

Update 
solution 

Graph Cut 
Transform into 
submodular E 
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Initial solution solution 

Invert 
Encoding 

Propose 
move 

 

Boykov et al., PAMI01 



Move making algorithms 
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bh-swap 
ï9ŀŎƘ ǾŀǊƛŀōƭŜ ǘŀƪƛƴƎ ƭŀōŜƭ ʰ ƻǊ b Ŏŀƴ ŎƘŀƴƎŜ ƛǘǎ ƭŀōŜƭ ǘƻ ʰ ƻǊ b 
ïMove space defined by the transformation function 

Transformation function 
 


