Prefix Sum
Outline

• Reduction operations
 • Parallel reduction

• Prefix sum
 • Parallel scan
 • Work-efficient scan

• Applications of scan
 • Line of light
 • Stream compaction
Reduction

- A class of operations involves:
 - A ordered set $S=\{a_0, a_1, a_2, \ldots, a_{n-1}\}$ of n numbers
 - A binary associative operator

- Examples of reduction operations:
 - Sum = Reduce($+$, S) = $a_0 + a_1 + a_2 + \ldots + a_{n-1}$
 - Product = Reduce(\times, S) = $a_0 \times a_1 \times a_2 \times \ldots \times a_{n-1}$
 - Min = Reduce(min, S) = $\text{min}(a_0, a_1, a_2, \ldots, a_{n-1})$

- The output is a single number
 - Require $O(N)$ time to compute on a sequential computer
Parallel Reduction

- Technique for performing reduction on parallel computers
 - Compute the sum of 2 numbers in each step
 - Reduce the numbers in the set by half
- Require $\log_2 N$ steps on a N-processor computer
 - Require _____ on M processors ($M < N$)
Speedup & Efficiency

- Speedup is the time it takes to complete an algorithm on 1 processor divided by the time it takes on N processors
 - Measures the gain of parallelizing an algorithm
 - Speedup of parallel reduction is \(\frac{N}{\log_2 N} \)
 - With \(M \) processors \(M < N \), the speedup is \(\frac{N}{______} \)

- Efficiency is defined as the speedup divided by the number of processors used
 - Measures how well the processors are unitized
 - Efficiency of parallel reduction is \(\frac{1}{\log_2 N} \)
 - With \(M \) processors \(M < N \), the speedup is \(\frac{1}{______} \)
Inherent Parallel Reduction on GPU

- Put data in a square texture & perform 2D reduction
 - Render a quarter-sized texture each pass
- Use shader:
 - Fetch nearby 4 values & calculate the sum
- Use build-in texture sampling functionality:
 - Set sampler to linear
 - Fetch the value at the center of the 4 pixels
MIPMAP

point sampling

mipmaps & linear interpolation
CUDA Implementation

- Need to use multiple thread blocks
 - For very large arrays
- How to communicate partial results between thread blocks?
 - CUDA has no global sync (among blocks)
 - Solution: use multiple kernels
 - Kernel launch as global sync point
 - Kernel launch has no low overhead

Mark Harris, from
Solution: Kernel Deposition

- Avoid global sync by decomposing computation into multiple kernel invocations

- In the case of reduction, code for all levels are the same
Reduction #1

```c
__global__ void reduce0(int *g_idata, int *g_odata) {
    extern __shared__ int sdata[];

    // each thread loads one element from global to shared mem
    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
    sdata[tid] = g_idata[i];
    __syncthreads();

    // do reduction in shared mem
    for(unsigned int s=1; s < blockDim.x; s *= 2) {
        if (tid % (2*s) == 0) {
            sdata[tid] += sdata[tid + s];
        }
        __syncthreads();
    }

    // write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
```
Interleaved Addressing

![Diagram of Interleaved Addressing](image)

1. **Step 1**: Thread IDs (0, 2, 4, 6, 8, 10, 12, 14) are applied with a stride of 1.
 - Values:
 - Step 1: 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

2. **Step 2**: Thread IDs (0, 4, 8, 12) are applied with a stride of 2.
 - Values:
 - Step 2: 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

3. **Step 3**: Thread IDs (0, 8) are applied with a stride of 4.
 - Values:
 - Step 3: 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

4. **Step 4**: Thread IDs (0) are applied with a stride of 8.
 - Values:
 - Step 4: 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

5. **Step 5**: Thread IDs (0) are applied with a stride of 16.
 - Values:
 - Step 5: 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

The diagram illustrates how values are accessed using interleaved addressing with different strides.
Performance for 4M elements

<table>
<thead>
<tr>
<th>Kernel 1: interleaved addressing with divergent branching</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
</tr>
</tbody>
</table>

Block Size = 128 threads, on G80 (GeForce 8800 GTX)
Reduction #2

Just replace divergent branch in inner loop:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2^s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

With strided index and non-divergent branch:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```
Parallel Reduction
Performance

<table>
<thead>
<tr>
<th></th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with divergent branching</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved addressing with bank conflicts</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
</tbody>
</table>
More optimization

<table>
<thead>
<tr>
<th>Kernel 1: interleaved addressing with divergent branching</th>
<th>Time ((2^{22} \text{ ints}))</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Kernel 2: interleaved addressing with bank conflicts | 3.456 ms | 4.854 GB/s | 2.33x | 2.33x |

| Kernel 3: sequential addressing | 1.722 ms | 9.741 GB/s | 2.01x | 4.68x |

| Kernel 4: first add during global load | 0.965 ms | 17.377 GB/s| 1.78x | 8.34x |

| Kernel 5: unroll last warp | 0.536 ms | 31.289 GB/s| 1.8x | 15.01x |

| Kernel 6: completely unrolled | 0.381 ms | 43.996 GB/s| 1.41x | 21.16x |

| Kernel 7: multiple elements per thread | 0.268 ms | 62.671 GB/s| 1.42x | 30.04x |
Prefix Sum (a.k.a. Scan)

- Given a list of n numbers, compute the partial sums using only numbers on the left sides
 - Input: $a_0, a_1, a_2, \ldots, a_{n-1}$
 - Output: $a_0, a_0+a_1, a_0+a_1+a_2, \ldots, a_0+a_1+a_2+\ldots+a_{n-1}$
 - Require $O(N)$ on a sequential computer

- Two variants of scan:
 - Inclusive scan: add all numbers on the left and the number itself
 - Exclusive scan: only add numbers on the left
 - The first output is zero
 - The last number in the input list is not used
Parallel Scan

- A commonly used building block for parallel algorithms
 - Require $\log_2 N$ steps on a N-processor computer
- In each step k, k from 0 to $\log_2 N$:
 - if $i > 2^k$, add number $a[i]$ with $a[i-2^k]$
Algorithm Complexity

- On a computer with N processors:
 - The total time needed to complete is ___
 - The speedup is _____
 - The efficiency is ______

- On a computer with M processors (M<N):
 - The total number of addition operations needed is ______
 - The total time needed to complete the additions is ______
Work Efficient Parallel Scan

- Based on the balanced tree data structure
 - Build a balanced binary tree on the input data, then traverse the tree to and from the root
 - Perform one add per tree node, resulting a total of $O(N)$ addition operations
- The algorithm consists of 2 phases
 - Upsweep phase traverses the tree from leaves to root computing partial sums
 - Down-sweep phase traverses from the root to leaves, using the partial sums to build the scan
Upsweep Phase

- // same operation as parallel reduction
- for (d = 1 to log₂n) {
 - for (i = 1 to n/2^d -1)
 do in parallel {
 - a_d[i] = a_{d-1}[2i] + a_{d-1}[2i+1]
 }
- }
- }

38

18 20

7 11 6 14

7 0 2 9 5 1 8 6
Down-sweep Phase

- for \(d = (\log_2 n) - 1 \) downto 0

 \[
 \begin{array}{c}
 \text{for } (i = 0 \text{ to } n/2^d - 1) \\
 \text{do in parallel} \\
 \text{if } (i > 0) \\
 \text{if } ((i \mod 2) \neq 0) \\
 a_d[i] = a_{d+1}[i/2] \\
 \text{else} \\
 a_d[i] += a_{d+1}[(i/2) - 1]
 \end{array}
 \]
Applications of Scan

- Radix sort
- Quicksort
- String comparison
- Lexical analysis
- Stream compaction
- Sparse matrices
- Polynomial evaluation
- Solving recurrences
- Tree operations
- Histograms
Sample App – Line of Sight

Altitude Map

Altitude Vector

Angle Vector

Max-Scan of Angle Vector

Ray Vectors
Stream Compaction

- Generate a compact stream by removing unwanted items from the original stream
 - Input: an ordered set S & a predicate p
 - Output: only elements v for which p(v) is true, preserving the ordering of the input elements

- Applications:
 - An important operation in collision detection & sparse matrix compression
 - Can be used to transform a heterogeneous vector, with elements of many types, into homogeneous vectors, in which each element has the same type
Stream Compaction Example

- Remove ≤4 numbers from the input stream
- Create a bit stream
 - Label >4 with 1
 - Label ≤4 with 0
- Apply exclusive prefix sum on the bit stream
- Store numbers into the addresses specified by the result of prefix sum
 - Require scatter support